JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (3): 89-95.doi: 10.6040/j.issn.1672-3961.0.2016.270

Previous Articles     Next Articles

Feature extraction method of rolling bearing inner ring in wind turbine based on improved EMD and feature box

YU Qingmin1, LI Xiaolei1*, ZHAI Yong2   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. School of Mechanical Engineering, Northeast Dianli University, Jilin 132012, Jilin, China
  • Received:2016-07-18 Online:2017-06-20 Published:2016-07-18

Abstract: According to the characteristics of vibration signal of rolling bearing inner ring in direct-driven wind turbine, a new method of fault diagnosis by improved empirical mode decomposition(EMD)and feature box was put forward. The original signal was decomposed by improved EMD to get a finite number of stationary intrinsic mode functions(IMFs). The characteristics of amplitude domain parameters such as mean and variance were extracted, which were turned into feature matrix chose by effectiveness. To perform data smoothing processing, The feature matrix was divided into boxes and replaced by means of data in each box. Examples showed that the feature matrix, which was divided into boxes finally, could effectively extract the fault feature of rolling bearing, and reduce the over fitting of the machine learning model.

Key words: data sub box, bearing inner ring, feature extraction, fault diagnosis, improved EMD, cost sensitive

CLC Number: 

  • TH17
[1] 蒋东翔,洪良友,黄乾,等. 风力机状态监测与故障诊断技术研究[J].电网与清洁能源,2008,24(3):40-44. JIANG Dongxiang, HONG Liangyou, HUANG Qian, et al. Condition monitoring and fault diagnostic techniques for wind turbine[J].Power System and Clean Energy, 2008, 24(3):40-44.
[2] 苏连成,李兴林. 中国北方地区风电轴承故障调查与分析[J].轴承,2013(11):59-62. SU Lianchen, LI Xinglin. Investigation and analysis of fault for wind turbine bearings in northern China[J]. Bearing, 2013(11):59-62.
[3] WALFORD A. Christopher.Wind turbine reliability:understanding and minimizing wind turbine operation and maintenance costs[R].California, USA: Sandia Corporation, 2006.
[4] 吴娜,孙丽玲,杨普. 风力机状态监测与故障诊断技术研究[J].华北水利水电学院学报,2012,33(2):86-90. WU Na, SUN Liling, YANG Pu. Research on wind turbine condition monitoring and fault diagnosis[J].Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(2):86-90.
[5] 周福昌,陈进,何俊, 等. 循环平稳信号处理在机械设备故障诊断中的应用综述[J].振动与冲击, 2006, 25(5):148-152. ZHOU Fuchang, CHEN Jin, HE Jun, et al. Survey of the application of cyclostationary signal processing in machinery fault diagnosis[J].Journal of Vibration and Shock, 2006, 25(5):148-152.
[6] 赵志宏,杨绍普.基于小波包变换与样本熵的滚动轴承故障诊断[J].振动、测试与诊断,2012,32(4):640-644. ZHAO Zhihong, YANG Shaopu. Roller bearing fault diagnosis based on wavelet packet transform and sample entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(4):640-644.
[7] 冯辅周,司爱威,饶国强,等.基于小波相关排列熵的轴承早期故障诊断技术[J]. 机械工程学报,2012,48(13):73-79. FENG Fuzhou,SI Aiwei, RAO Guoqiang, et al. Early fault diagnosis technology for bearing based on wavelet correlation permutation entropy[J]. Journal of Mechanical Engineering, 2012, 48(13):73-79.
[8] 于德介,陈淼峰,程军圣,等.一种基于经验模式分解与支持向量机的转子故障诊断方法[J]. 中国电机工程学报,2006,26(16):162-167. YU Dejie, CHEN Miaofeng, CHENG Junsheng, et al. A fault diagnosis approach for rotor systems based on empirical mode decomposition method and support vector machines[J]. Proceedings of the CSEE, 2006, 26(16):162-167.
[9] 苏文胜,王奉涛,张志新,等.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击,2010,29(3):18-21. SU Wensheng, WANG Fengtao, ZHANG Zhixin, et al. The application of EMD and spectral kurtosis method in the early fault diagnosis of rolling bearing[J]. Journal of Vibration and Shock, 2010, 29(3):18-21.
[10] 张超,陈建军,徐亚兰.基于EMD分解和奇异值差分谱理论的轴承故障诊断方法[J]. 振动工程学报,2011,24(5):539-545. ZHANG Chao, CHEN Jianjun, XU Yalan. A bearing fault diagnosis method based on EMD and difference spectrum theory of singular value[J]. Journal of Vibration Engineering, 2011, 24(5):539-545.
[11] 胡爱军,马万里,唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J]. 中国电机工程学报,2012, 32(11):106-111. HU Aijun, MA Wanli, TANG Guiji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and Kurtosis criterion[J].Proceedings of the CSEE, 2012, 32(11):106-111.
[12] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J]. Proceedings of the Royal Society A, 1998, 454(1971):903-995.
[13] HUANG D J, ZHAO J P, SUN J L. Practical implementation of Hilbert-Huang transform algorithm[J]. Acta Oceanologica Sinica, 2003, 22(1):1-14.
[14] 李航. 统计学习方法[M]. 北京:清华大学出版社, 2012:18-20.
[15] 付忠良. 多分类问题代价敏感AdaBoost算法[J].自动化学报, 2011, 37(8):973-983. FU Zhongliang. Cost-sensitive AdaBoost algorithm for multi-class classification problems[J]. Acta Automatica Sinica, 2011, 37(8):973-983.
[16] 刘金福, 于达仁, 胡清华, 等. 基于加权粗糙集的代价敏感故障诊断方法[J]. 中国电机工程学报, 2007, 27(23):93-99. LIU Jinfu, YU Daren, HU Qinghua, et al. Cost-sensitive fault diagnosis based on weighted rough sets[J]. Proceedings of the CSEE, 2007, 27(23):93-99.
[17] 韩家炜, MICHELINE Kamber. 数据挖掘:概念与技术[M]. 范明, 译. 北京:机械工业出版社, 2001:70-71.
[18] 王洁松, 张小飞. 基于特征匹配和分箱技术的FCM算法研究[J]. 南通航运职业技术学院学报, 2011, 10(3):56-59. WANG Jiesong, ZHANG Xiaofei. AFCM algorithm based on character mMatching and bBinning[J]. Journal of Nantong Vocational & Technical Shipping College, 2011, 10(3):56-59.
[19] 傅涛,孙文静,孙亚民. 基于分箱统计的FCM算法及其在网络入侵检测中的应用[J]. 计算机科学,2008,35(4):36-39. FU Tao, SUN Wenjing, SUN Yamin. Algorithm based on box-FCM statistics and its application in network intrusion detection[J].Computer Science, 2008, 35(4):36-39.
[20] 张明锦,王明伟. 基于数据分箱的CARS方法用于基因表达谱的特征筛选[J]. 计算机与应用化学,2015,32(8):1004-1006. ZHANG Mingjin, WANG Mingwei. Use of binning-based CARS method for feature selection from gene expression data[J].Computers and Applied Chemistry, 2015, 32(8):1004-1006.
[21] 袁朝庆, 赵丹,余亚辉. 基于经验模态分解法和时域幅值参数识别结构损伤程度[J]. 无损检测,2008, 30(2):84-86. YUAN Zhaoqing, ZHAO Dan, YU Yahui. Identifying the damage degree of structure based on empirical mode decomposition and parameters in time domain amplitude[J]. Nondestructive Testing, 2008, 30(2):84-86.
[22] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报,2000, 26(1):32-42. ZHANG Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1):32-42.
[23] 张周锁,李凌均,何正嘉. 基于支持向量机的机械故障诊断方法研究[J]. 西安交通大学学报,2002,36(12):1303-1306. ZHANG Zhousuo, LI Lingun, HE Zhengjia. Research on diagnosis method of machinery fault based on support vector machine[J].Journal of Xi'an Jiaotong University, 2002, 36(12):1303-1306.
[1] WANG Guoxin, CHEN Fengdong, LIU Guodong. Feature extraction method of color pseudo-random coded structured light [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 55-60.
[2] CHENG Xin, ZHANG Lin, HU Yefa, CHEN Qiang, LIANG Dian. Fault diagnosis of electromagnetic coil in active magnetic bearing based on current characteristics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 94-101.
[3] YE Ziyun, YANG Jinfeng. A finger-vein recognition method based on weighted graph model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 103-109.
[4] CHENG Xin, LIU Han, WANG Bo, LIANG Dian, CHEN Qiang. A fault-tolerant control architecture for active magnetic bearing based on dual core processor [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 72-80.
[5] ZHANG Zhenyue, LI Fei, JIANG Mingyan. Unsupervised face image feature extraction based on low-rank representation projection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 15-20.
[6] WANG Xiuqing, ZENG Hui, XIE Fei, LYU Feng. Fault diagnosis for manipulators based on Spiking neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 15-21.
[7] SONG Yang, ZHONG Maiying. Fault isolability analysis based on improved distance similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 103-109.
[8] LI Wei, WANG Kehong, CAO Huichao. A fault filtering method based on an improved extended state filter for nonlinear system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 7-14.
[9] MAO Haijie, LI Wei, WANG Kehong, FENG Xiaolin. Sensor fault tolerant switch strategy for multi-motor synchronous system based on ADRC [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 64-70.
[10] QIU Lu, YE Yinzhong, JIANG Chundi. Fault diagnostic method for micro-grid based on wavelet singularity entropy and SOM neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 118-122.
[11] XIE Xiaolong, JIANG Bin, LIU Jianwei, JIANG Yinhang. Fault diagnosis and fault tolerant control based on sliding mode observer for speed sensor in asynchronous motor [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 210-214.
[12] WANG Mengyuan, ZHANG Xiong, MA Liang, PENG Kaixiang. Fault diagnosis for industrial processes based on causal topological graph [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 187-194.
[13] SUN Yuancheng, YAO Lina. Fault diagnosis and fault tolerant control for non-Gaussian uncertain singular stochastic distribution control systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 238-245.
[14] LI Minghu, LI Gang, ZHONG Maiying. Application of dynamic kernel principal component analysis in unmanned aerial vehicle fault diagnosis [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 215-222.
[15] LIU Zhuo, WANG Tianzhen, TANG Tianhao, FENG Yefan, YAO Junqi, GAO Diju. A fault diagnosis and fault-tolerant control strategy for multilevel inverter [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 229-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!