JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (6): 127-134.doi: 10.6040/j.issn.1672-3961.0.2016.144

Previous Articles    

Prediction of flow rate during tunnel excavation based on discrete fracture network models

BAO Jianye1, WANG Jing2*   

  1. 1. College of Civil Engineering, Inner Mongola Technical College of Construction, Hohhot 010070, Inner Mongola, China;
    2. Faculty of Civil and Transportation Engineering, Inner Mongola Techmical College of Construction, Hohhot 010070, Inner Mongola, China
  • Received:2016-04-29 Online:2016-12-20 Published:2016-04-29

Abstract: 96 complex fracture networks was modelled that had different water depths, tunnel diameters, and excavation distances, a multi-variable regression was proposed function to predict the flow rate at tunnel face by calculating flow rate of each case. The results showed that the main flow paths were formed by connected fractures between the inlet and outlet boundaries. The fractures which formed fracture network had the maximum flow rate, and the flow rate was smaller for fractures far from the flow paths. With the increment of excavation distance, the flow rate at tunnel face increased following power law functions when water depth was small and linear functions when water depth was large. Tunnel diameter was the most sensitive parameter to influence the flow rate at tunnel face, followed by water depth and excavation distance. The predicted and calculated results were tallied well, which indicated that the proposed multi-variable regression function was suitable for predicting flow rate at tunnel face. The obtained conclusions are helpful for the engineers to predict the flow rate at tunnel face during construction.

Key words: flow rate, fracture network, regression function, prediction, tunnel

CLC Number: 

  • U452
[1] MIN K B, JING L. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(6):795-816.
[2] MIN K B, RUTQVIST J, TSANG C F, et al. Stress-dependent permeability of fractured rock masses: a numerical study[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(7):1191-1210.
[3] 李方东. 基于涌水量预估和动态监测的公路隧道长距离反坡排水施工技术及其应用[J]. 隧道建设, 2015, 35(12):1321-1330. LI Fangdong. Reverse slope drainage technology based on water inflow prediction and dynamic monitoring and its application in long tunnel[J]. Tunnel Construction, 2015, 35(12):1321-1330.
[4] 胡子平. 宜万铁路齐岳山隧道选线, 施工与管理[J]. 铁道标准设计, 2010(8):12-19. HU Ziping. Route selection, construction and management of Qiyueshan tunnel in Yiwan railway[J]. Railway Standard Desigh, 2010(8):12-19.
[5] 左玉杰. 反坡富水岩溶隧道抽排水系统的设置和应用[J]. 铁道建筑技术, 2007(4):26-29. ZUO Yujie. A rangement and application of the tunnel drainage system in the reverse-slope stratum with a bundant water[J]. Railway Construction Technology, 2007(4):26-29.
[6] 王晓明, 曹正波. 基于水均衡方法的隧道涌水量概率预测[J]. 交通标准化, 2014, 42(23):112-114. WANG Xiaoming, CAO Zhengbo. Probabilistic prediction of water inflow into a tunnel using water balance method[J]. Transport Standardization, 2014, 42(23):112-114.
[7] 喻成云. 基于统计分析的西南岩溶区隧道涌水量预测探析[D]. 成都:成都理工大学, 2013. YU Chengyun. Based on statistical analysis of southwest China karst tunnel inflow forecast analysis[D]. Chengdu: Chengdu University of Technology, 2013.
[8] 刘牛生. 特长隧道涌水综合反坡排水施工技术[J]. 建筑, 2010(12):44. LIU Niusheng. Construction techniques for reverse slope drainage of a long tunnel[J]. Construction and Architecture, 2010(12):44.
[9] CHELIDZE T, GUEGUEN Y. Evidence of fractal fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1990, 27(3):223-225.
[10] WATANABE K, TAKAHASHI H. Fractal geometry characterization of geothermal reservoir fracture networks[J]. Journal of Geophysical Research: Solid Earth, 1995, 100:521-528.
[11] WATANABE K, TAKAHASHI H. Parametric study of the energy extraction from hot dry rock based on fractal fracture network model[J]. Geothermics, 1995, 24(2):223-236.
[12] KOLYUKHIN D, TORABI A. Power-law testing for fault attributes distributions[J]. Pure and Applied Geophysics, 2013, 170(12):2173-2183.
[13] DMITRIY K, ANITA T. Statistical analysis of the relationships between faults attributes[J]. Journal of Geophysical Research: Solid Earth(1978—2012), 2012, 117(B5):81-88.
[14] TORABI A, BERG S S. Scaling of fault attributes: a review[J]. Marine and Petroleum Geology, 2011, 28(8):1444-1460.
[15] CHILDS C, WALSH J J, WATTERSON J. A method for estimation of the density of fault displacements below the limits of seismic resolution in reservoir formations[J]. North Sea Oil and Gas Reservoirs—II, 1990:309-318.
[16] SORNETTE A, DAVY P, SORNETTE D. Fault growth in brittle-ductile experiments and the mechanics of continental collisions[J]. Journal of Geophysical Research: Solid Earth(1978—2012), 1993, 98(B7):12111-12139.
[17] BOUR O, DAVY P. Connectivity of random fault networks following a power law fault length distribution[J]. Water Resources Research, 1997, 33(7):1567-1583.
[18] REEVES D M, PARASHAR R, POHLL G, et al. The use of discrete fracture network simulations in the design of horizontal hillslope drainage networks in fractured rock[J]. Engineering Geology, 2013, 163:132-143.
[19] PARASHAR R, REEVES D M. On iterative techniques for computing flow in large two-dimensional discrete fracture networks[J]. Journal of Computational and Applied Mathematics, 2012, 236(18):4712-4724.
[20] BAGHBANAN A, JING L. Hydraulic properties of fracture rock masses with correlated fracture length and aperture[J]. International Journal Rock Mechanics Mining Sciences, 2007, 44(5):704-719.
[21] 顾博渊, 史宝童, 黄嫚. 山岭隧道涌水量预测方法分类及相关因素分析[J]. 隧道建设, 2015, 35(12):1258-1263. GU Boyuan, SHI Baotong, HUANG Man. Classification of water inflow prediction methods for mountain-crossing tunnels and analysis on related factors[J]. Tunnel Construction, 2015, 35(12):1258-1263.
[22] 田海涛, 董益华, 王延辉. 隧道涌水量预测的研究[J]. 水利与建筑工程学报, 2007, 5(3):75-77. TIAN Haitao, DONG Yihua, WANG Yanhui. Study on forecasting for water-gushed yield of tunnel[J]. Journal of Water Resources and Architectural Engineering, 2007, 5(3):75-77.
[23] 姜爱民, 杨辉, 张明. 确定性数学模型方法预测隧道涌水量研究[J]. 工程勘察, 2012, 40(6):37-41. JIANG Aimin, YANG Hui, ZHANG Ming. Study on deterministic mathematical model for predicting water gushing yield of tunnel[J]. Geotechnical Investigation and Surveying, 2012, 40(6):37-41.
[24] 陶玉敬, 彭金田, 陶炳勋. 隧道涌水量预测方法及其分析[J]. 四川建筑, 2007, 27(6):109-110. TAO Yujing, PENG Jintian, TAO Bingxun. Study and analysis on forecasting for water-gushed yield of tunnel[J]. Sichuan Architecture, 2007, 27(6):109-110.
[25] 郑黎明. 隧道涌水灾害预测的随机性数学模型方法[J]. 西南交通大学学报, 1998, 33(3):273-278. ZHENG Liming. A stochastic mathematic method for predicting gushing water from tunnel surrounding rockmasses[J]. Journal of Southwest Jiaotong University, 1998, 33(3):273-278.
[26] 赵继增. 青岛胶州湾海底隧道涌水断层全断面帷幕注浆技术研究[J]. 山东大学学报(工学版), 2009, 39(6):116-120. ZHAO Jizeng. Study of full-face curtain grouting on water-burst fault F4-4 subsea tunnel in Qingdao Jiaozhou bay[J]. Journal of Shandong University(Engineering Science), 2009, 39(6):116-120.
[27] 张庆松, 李术才, 韩宏伟, 等. 岩溶隧道施工风险评价与突水灾害防治技术研究[J]. 山东大学学报(工学版), 2009, 39(3):106-110. ZHANG Qingsong, LI Shucai, HAN Hongwei, et al. Study on risk evaluation and water inrush disaster preventing technology during construction of karst tunnels[J]. Journal of Shandong University(Engineering Science), 2009, 39(3):106-110.
[28] 薛翊国, 李术才, 张庆松, 等. 隧道信息化施工地质灾害预警预报技术研究[J]. 山东大学学报(工学版), 2008, 38(5):25-30. XUE Yiguo, LI Shucai, ZHANG Qingsong, et al. Prediction and early-warning technology of geological hazards in tunnel informational construction[J]. Journal of Shandong University(Engineering Science), 2008, 38(5):25-30.
[29] 邱道宏, 钟世航, 李术才, 等. 陆地声纳法在隧道不良地质超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4):17-20. QIU Daohong, ZHONG Shihang, LI Shucai, et al. Application of the land sonar method in tunnel defective geological advanced prediction[J]. Journal of Shandong University(Engineering Science), 2009, 39(4):17-20.
[30] 马秀媛, 李逸凡, 张立, 等. 数值方法在矿井涌水量预测中的应用[J]. 山东大学学报(工学版), 2011, 41(5):86-91. MA Xiuyuan, LI Yifan, ZHANG Li, et al. Numerical methods in predicting mine discharge[J]. Journal of Shandong University(Engineering Science), 2011, 41(5):86-91.
[31] 刘斌, 李术才, 张庆松, 等. 隧道地质灾害预警体系中岩溶裂隙水综合预报技术研究[J]. 山东大学学报(工学版), 2009, 39(3):115-121. LIU Bin, LI Shucai, ZHANG Qingsong, et al. Study of the prediction of karst-fractured groundwater in prediction and early warning system of tunnel geologic hazards[J]. Journal of Shandong University(Engineering Science), 2009, 39(3):115-121.
[32] ENGLMAN R, GUR Y, JAEGER Z. Fluid flow through a crack network in rocks[J]. Journal of Applied Mechanics, 1983, 50(4a):707-711.
[33] ROBINSON P C. Connectivity of fracture systems-a percolation theory approach[J]. Journal of Physics A: Mathematical and General, 1983, 16(3):605.
[34] ROBINSON P C. Numerical calculations of critical densities for lines and planes[J]. Journal of Physics A: Mathematical and General, 1984, 17(14):2823.
[35] BALBERG I, ANDERSON C H, ALEXANDER S, et al. Excluded volume and its relation to the onset of percolation[J]. Physical Review B, 1984, 30(7):3933-3943.
[36] GUEGUEN Y, DIENES J. Transport properties of rocks from statistics and percolation[J]. Mathematical Geology, 1989, 21(1):1-13.
[37] SAHIMI M. Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing[J]. Reviews of Modern Physics, 1993, 65(4):1393.
[38] ANDRADE JR J S, OLIVEIRA E A, MOREIRA A A, et al. Fracturing the optimal paths[J]. Physical Review Letters, 2009, 103(22):225503.
[39] DAVY P. On the frequency-length distribution of the San Andreas fault system[J]. Journal of Geophysical Research, 1993, 98(B7):12141-12151.
[40] BOGDANOV I I, MOURZENKO V V, THOVERT J F, et al. Effective permeability of fractured porous media with power-law distribution of fracture sizes[J]. Physical Review E, 2007, 76(3):73-82.
[41] DVERSTORP B, ANDERSSON J. Application of the discrete fracture network concept with field data: possibilities of model calibration and validation[J]. Water Resources Research, 1989, 25(3):540-550.
[42] TSANG Y W, TSANG C F, HALE F V, et al. Tracer transport in a stochastic continuum model of fractured media[J]. Water Resources Research, 1996, 32(10):3077-3092.
[43] DE DREUZY J R, DAVY P, BOUR O. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. permeability of networks based on lognormal distribution of apertures[J]. Water Resources Research, 2001, 37(8):2079-2095.
[44] DE DREUZY J R, DAVY P, BOUR O. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. effective connectivity[J]. Water Resources Research, 2001, 37(8):2065-2078.
[1] ZHOU Chenying. Image analysis and engineering application of ground penetrating radar in tunnel lining detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 61-68.
[2] SONG Guijie. Deformation characteristic and instability analysis for shallow soft rock section during tunnel-entering construction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 53-60.
[3] XIE Guohui, FAN Hao. Prediction model of concentrating solar power technology maturity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 83-88.
[4] LIU Jifeng, YANG Huanhuan. Risk control of extremely close twin shield tunnels nearby passing intensive buildings based on informative construction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 102-111.
[5] BAI Xianjun, WANG Taixing, WEI Xin, ZHAO Wusheng. Effect of the velocity pulse on the seismic response of the tunnel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 14-19.
[6] ZHOU Lun, LI Shucai, XU Zhenhao, LI Liping, HUANG Xin, HE Shujiang, LI Guohao. Integrated advanced geological prediction technology of tunnel and its engineering application [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 55-62.
[7] FANG Hao, LI Yun. Random undersampling and POSS method for software defect prediction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 15-21.
[8] WAN Li, WANG Chunhe, WANG Qi, LI Shucai, SHAO Xing, JIANG Bei, SUN Huibin, QIN Qian. The control mechanism for super section tunnel on weak surrounding rock and its application [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 59-67.
[9] WANG Zhiqiang, WEN Yimin, LI Fang. Collaborative recommendation for scenic spots based on multi-aspect ratings [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 54-61.
[10] HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47.
[11] WANG Zhechao, ZHANG Zhenjie, LI Shucai, BI Liping, FANG Shuixin, ZHONG Kecheng. Assessment of inter-cavern containment property for underground oil storage caverns using discrete fracture networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 94-100.
[12] LU Wenyang, XU Jiayi, YANG Yubin. LDA-based link prediction in social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 26-31.
[13] ZHENG Yi, ZHU Chengzhang. A prediction method of atmospheric PM2.5 based on DBNs [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 19-25.
[14] GAO Zhijun, CUI Xinzhuang, SUI Wei, GUO Hong, LIU Hang, LI Changyi, FENG Hongbo. Dynamic interaction and damage analysis of large runaway vehicle and tunnel lining [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 49-57.
[15] ZHOU Qian, ZHAO Degang. Application of the horizontal jet grouting pile in water-bearing sandy layer of shallow excavating tunnel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[2] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[3] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[4] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[5] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[7] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[8] ZHAO Ke-Jun, WANG Xin-Jun, LIU Xiang, CHOU Yi-Hong. Algorithms of continuous top-k join query over structured overlay networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 32 -37 .
[9] ZHAO Zhi-guang,WANG Deng-jie,TIAN Yun-fei . Roadbed settlement based on the gray theory[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 86 -88 .
[10] YAO Zhan-yong,SHANG Qing-sen,ZHAO Zhi-zhong,JIA Zhao-xia . The influence analysis of the semirigid asphalt pavement configuration stress and distortion by interface conditions[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 93 -99 .