Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (5): 120-129.doi: 10.6040/j.issn.1672-3961.0.2024.135

• Civil Engineering • Previous Articles    

The working mechanism of HLC composite steel pile with full recovery in foundation pit

LI Lianxiang1,2,3, QIU Yefan1,2*, HAN Yiming1,2, ZHANG Julian4, LI Qingzhong5, CHE Xiuxi1,2   

  1. LI Lianxiang1, 2, 3, QIU Yefan1, 2*, HAN Yiming1, 2, ZHANG Julian4, LI Qingzhong5, CHE Xiuxi1, 2(1. Shandong University Foundation Pit and Deep Foundation Engineering Technology Research Center, Jinan 250061, Shandong, China;
    2. College of Civil Engineering and Water Conservancy, Shandong University, Jinan 250061, Shandong, China;
    3.Shandong Hi-Speed Geotechnical Engineering Co., Ltd., Jinan 250102, Shandong, China;
    4. Shanghai Hongxin Equipment Engineering Co., Ltd., Shanghai 201806, China;
    5. Ruima Wanjian(Anhui)Construction Protecting Technology Co., Ltd., Maanshan 243003, Anhui, China
  • Published:2025-10-17

Abstract: To optimize the application of HLC composite steel piles in foundation pit support and solve the problem of unclear soil pressure sharing between H-shaped steel and steel sheet piles in the existing design, this study adopted a combined method of theoretical analysis, on-site measurement, and numerical simulation. The calculation formulas for the moment of inertia of HLC composite steel piles in ideal and actual states were derived. The calculation methods for the section stiffness reduction coefficient and the synergy coefficient were proposed. The variation law of the stiffness reduction coefficient of HLC composite steel piles along the depth was analyzed to characterize the working performance of the overall structure. The results showed that the earth pressure sharing ratio of each supporting pile did not conform to the theoretical stiffness distribution law, with that of a single steel sheet pile reaching up to 10%. The actual supporting stiffness should take into account the interaction between the supporting units. This study could provide a theoretical reference for the design of cantilever HLC foundation pit support structures.

Key words: HLC steel pile, steel sheet pile, section stress, stiffness reduction, cooperativity coefficient

CLC Number: 

  • TU392.1
[1] 中国工程建设标准化协会. 全回收基坑支护技术规程: T/CECS 1208—2022[S]. 北京: 中国建筑工业出版社, 2022.
[2] 李连祥. 土岩双元深基坑工程[M]. 北京: 中国建筑工业出版社, 2022: 1-5.
[3] 李连祥. 地下结构群深基坑工程[M]. 北京: 中国建筑工业出版社, 2023: 1-13.
[4] 中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012.
[5] SCHMIEG H, VIELSACK P. Transmission of shear forces in sheet pile interlocks[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 292-297.
[6] 麦桂林. U型钢板桩墙抗弯刚度试验研究与数值分析[D]. 广州:华南理工大学, 2019. MAI Guilin. Experimental study and numerical analysis of flexural stiffness of U-shaped steel sheet pile wall[D]. Guangzhou: South China University of Technology, 2019.
[7] 中国工程建设标准化协会. 钢板桩支护技术规程: T/CECS 720—2020[S]. 北京: 中国建筑工业出版社, 2020.
[8] 刘震宇. U型钢板桩锁扣抗弯刚度折减效应研究[J]. 中国水运(下半月), 2016, 16(3): 304-306. LIU Zhenyu. Study on the reduction effect of bending stiffness of U-shaped steel sheet pile locking[J].China Water Transportation(Second Half Month), 2016, 16(3): 304-306.
[9] 张帅. U型钢板桩墙桩间锁扣摩擦力及其抗弯刚度研究[D]. 广州:华南理工大学, 2017. ZHANG Shuai. Study on the friction force and bending stiffness of U-shaped steel sheet pile wall[D]. Guangzhou:South China University of Technology, 2017.
[10] 罗永真. 基于桩间锁扣摩擦分析的钢板桩刚度特性研究[D]. 广州:华南理工大学, 2015. LUO Yongzhen. Study on stiffness characteristics of steel sheet pile based on friction analysis of locking buckle between piles[D]. Guangzhou:South China University of Technology, 2015.
[11] 陈彬. 基于有限元分析的钢板桩间锁扣摩擦对其抗弯特性的影响研究[D]. 广州:华南理工大学, 2013. CHEN Bin. Research on the influence of locking friction between steel sheet piles on its bending characteristics based on finite element analysis [D]. Guangzhou: South China University of Technology, 2013.
[12] KORT D A. Interlock friction in steel sheet piling[J]. Materials Science, Engineering, 2006: 845-851.
[13] TOMINAGA T, NAKANO H, TESHIMA K. Study for structural performance of hat-type sheet pile for retaining wall[J]. Geotechnics for Sustainable Infrastructure Development, 2020, 62: 459-466.
[14] 杨靓. 组合钢板桩(HSW工法)支护结构设计及其工程应用[D]. 南京:东南大学, 2017. YANG Liang. Supporting structure design and engineering application of composite steel sheet pile(HSW method)[D]. Nanjing: Southeast Univer-sity, 2017.
[15] 张洁. 组合钢板桩(HSW工法)支护结构设计工程应用[J]. 四川水泥, 2020(2): 88. ZHANG Jie. Engineering application of composite steel sheet pile(HSW method)supporting structure design [J]. Sichuan Cement, 2020(2): 88.
[16] 赵志孟, 郑伟锋. HUC组合钢板桩的受力性能分析[J].施工技术, 2017, 46(增刊2): 270-274. ZHAO Zhimeng, ZHENG Weifeng. Mechanical perfor-mance analysis of HUC composite steel sheet pile[J]. Construction Technology, 2017, 46(Suppl.2): 270-274.
[17] 赵志孟. HUC组合钢板桩的受力性能分析及施工措施控制[D]. 广州:广州大学, 2017. ZHAO Zhimeng. Mechanical performance analysis and construction measures control of HUC composite steel sheet pile[D]. Guangzhou: Guangzhou University, 2017.
[18] 王鹏, 余振锡, 余浩. HUC组合支护结构的有限元分析[J]. 四川建材, 2020, 46(11): 45-46. WANG Peng, YU Zhenxi, YU Hao. Finite element analysis of HUC combined support structure [J].Sichuan Building Materials, 2020, 46(11): 45-46.
[19] 王鹏. HUC组合支护结构的理论分析与实践研究[D]. 马鞍山:安徽工业大学, 2021. WANG Peng. Theoretical analysis and practical research on HUC combined support structure[D]. Maanshan: Anhui University of Technology, 2021.
[20] 冯维明. 材料力学(第2版)[M]. 北京: 国防工业出版社, 2015: 32-74.
[21] 刘立新, 叶燕华. 混凝土结构原理(新1版)[M]. 武汉理工大学出版社, 2011: 129-136.
[22] 朱晓天. 渗流作用下粉质黏土地层超深基坑危害数值模拟分析[J]. 隧道与地下工程灾害防治, 2022, 4(2): 98-106. ZHU Xiaotian. Numerical simulation analysis of ultra-deep foundation pit hazard in silty clay stratum under seepage[J]. Tunnel and underground engineering disaster prevention and control, 2022, 4(2): 98-106.
[23] 朱嘉敏. 钢板桩格形围堰三维有限元数值分析及施工方法探究[D]. 北京:中国地质大学, 2020. ZHU Jiamin. Three-dimensional finite element numerical analysis and construction method of steel sheet pile lattice cofferdam[D]. Beijing: China University of Geos-ciences, 2020.
[24] MAWER R W, BYFIELD M P. Reduced modulus action in U-section steel sheet pile retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineer, 2010, 136(3):439-444.
[25] DIBIAGIO E. Field instrumentation:a geotechnical tool[M]. Norwegian: Norwegian Geotechnical Institute Pub, 1977: 29-40.
[26] 赵明华. 土力学与基础工程[M]. 4版. 武汉理工大学出版社, 2014: 122-129.
[27] 肖杰. 并排新-旧组合路堤桩板墙协同作用机理的模型试验研究[D]. 兰州:兰州交通大学, 2022. XIAO Jie. Model test study on synergistic mechanism of pile-slab wall of side-by-side new-old composite embankment[D]. Lanzhou:Lanzhou Jiaotong University, 2022.
[28] BS8002: Earth retaining structures[S]. London: BSI, 1994.
[1] ZHOU Shuming, YAN Donghuang. Experimental study on stiffness of reinforced concrete pre-cracked beams based on crack parameters [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 53-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!