Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (5): 110-119.doi: 10.6040/j.issn.1672-3961.0.2025.031
• Machine Learning & Data Mining • Previous Articles
ZHENG Xiao1, CHEN He2, ZHOU Dongao3*, GONG Yongshun1
CLC Number:
| [1] DENG H Q, ZHANG Z X, ZOU S H, et al. Bi-directional frame interpolation for unsupervised video anomaly detection[C] //2023 IEEE/CVF Winter Confe-rence on Applications of Computer Vision(WACV). Waikoloa, USA: IEEE, 2023: 2633-2642. [2] CHANG Y P, TU Z G, XIE W, et al. Video anomaly detection with spatio-temporal dissociation[J]. Pattern Recognition, 2022, 122: 108213. [3] 吕浩, 易鹏飞, 刘瑞, 等. 用于视频异常检测的时序多尺度自编码器[J]. 图学学报, 2022, 43(2): 223-229. LYU Hao, YI Pengfei, LIU Rui, et al. Sequential multi-scale autoencoder for video anomaly detection[J]. Journal of Graphics, 2022, 43(2): 223-229. [4] DI MAURO M, GALATRO G, FORTINO G, et al. Supervised feature selection techniques in network intrusion detection: a critical review[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104216. [5] WAN B Y, FANG Y M, XIA X, et al. Weakly supervised video anomaly detection via center-guided discriminative learning[C] //2020 IEEE International Conference on Multimedia and Expo(ICME). London, UK: IEEE, 2020: 1-6. [6] SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 6479-6488. [7] XU D, WU P, YUAN L. Video anomalous behaviour detection based on compressed-inflated attention module[J]. Journal of Computer Science and Electrical Engineering, 2024, 6(2): 2663-1946. [8] ULLAH W, HUSSAIN T, ULLAH F U M, et al. TransCNN: hybrid CNN and Transformer mechanism for surveillance anomaly detection[J]. Engineering Applica-tions of Artificial Intelligence, 2023, 123: 106173. [9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017: 6000-6010. [10] HUSSAIN A, ULLAH W, KHAN N, et al. TDS-Net: Transformer enhanced dual-stream network for video anomaly detection[J]. Expert Systems with Applica-tions, 2024, 256: 124846. [11] 黄少年, 文沛然, 全琪, 等. 基于多支路聚合的帧预测轻量化视频异常检测[J]. 图学学报, 2023, 44(6): 1173-1182. HUANG Shaonian, WEN Peiran, QUAN Qi, et al. Future frame prediction based on multi-branch aggregation for lightweight video anomaly detection[J]. Journal of Graphics, 2023, 44(6): 1173-1182. [12] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C] //International Conference on Machine Learning. [S.l.] : PMLR, 2021: 8748-8763. [13] LI J N, LI D X, XIONG C M, et al. BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation[C] //International Conference on Machine Learning. Baltimore, USA: PMLR, 2022: 12888-12900. [14] PU Y J, WU X Y, YANG L L, et al. Learning prompt-enhanced context features for weakly-supervised video anomaly detection[J]. IEEE Transactions on Image Processing, 2024, 33: 4923-4936.. [15] WU P, ZHOU X, PANG G, et al. VadCLIP: adapting vision-language models for weakly supervised video anomaly detection[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2024: 6074-6082. [16] CHEN W L, MA K T, YEW Z J, et al. TEVAD: improved video anomaly detection with captions[C] //2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Vancouver, Canada: IEEE, 2023: 5549-5559. [17] SHI Y Z, YAMASHITA T, HIRAKAWA T, et al. Caption-guided interpretable video anomaly detection based on memory similarity[J]. IEEE Access, 2024, 12: 63995-64005. [18] HONG W Y, WANG W H, DING M, et al. CogVLM2: visual language models for image and video understanding[EB/OL].(2024-08-29)[2025-03-01]. https://arxiv.org/abs/2408.16500v1 [19] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu, USA: IEEE, 2017: 4724-4773. [20] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C] //2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE, 2015: 1-9. [21] CHEN T S, SIAROHIN A, MENAPACE W, et al. Panda-70M: captioning 70M videos with multiple cross-modality teachers[C] //2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle, USA: IEEE, 2024: 13320-13331. [22] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL].(2021-06-03)[2025-03-01]. https://arxiv.org/abs/2010.11929v2 [23] WAN B Y, JIANG W H, FANG Y M, et al. Anomaly detection in video sequences: a benchmark and computational model[J]. IET Image Processing, 2021, 15(14): 3454-3465. [24] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].(2017-01-30)[2025-03-01]. https://arxiv.org/abs/1412.6980v9 [25] LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 FPS in MATLAB[C] //2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 2720-2727. [26] LUO W X, LIU W, GAO S H. A revisit of sparse coding based anomaly detection in stacked RNN framework[C] //2017 IEEE International Conference on Computer Vision(ICCV). Venice, Italy: IEEE, 2017: 341-349. [27] CHANG Y P, TU Z G, XIE W, et al. Video anomaly detection with spatio-temporal dissociation[J]. Pattern Recognition, 2022, 122: 108213. [28] QIU S M, YE J F, ZHAO J C, et al. Video anomaly detection guided by clustering learning[J]. Pattern Recognition, 2024, 153: 110550. [29] YANG Z Y, RADKE R J. Context-aware video anomaly detection in long-term datasets[C] //2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Seattle, USA: IEEE, 2024: 4002-4011. |
| [1] | LI Erchao, ZHANG Zhizhao. Online dynamic demand vehicle routing planning [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 62-73. |
| [2] | YANG Jucheng, WEI Feng, LIN Liang, JIA Qingxiang, LIU Jianzheng. A research survey of driver drowsiness driving detection [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 1-12. |
| [3] | XIAO Wei, ZHENG Gengsheng, CHEN Yujia. Named entity recognition method combined with self-training model [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 96-102. |
| [4] | Gang HU, Lemeng WANG, Zhiyu LU, Qin WANG, Xiang XU. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10. |
| [5] | Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7. |
| [6] | Yujiang FAN,Huanhuan HUANG,Jiaxiong DING,Kai LIAO,Binshan YU. Resilience evaluation system of the old community based on cloud model [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 1-9, 19. |
| [7] | Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73. |
| [8] | YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50. |
| [9] | ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33. |
| [10] | WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60. |
| [11] | YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69. |
| [12] | HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22. |
| [13] | LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142. |
| [14] | LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126. |
| [15] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
|
||