Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (2): 58-70.doi: 10.6040/j.issn.1672-3961.0.2024.045
• Machine Learning & Data Mining • Previous Articles Next Articles
CHEN Sugen1,2, ZHAO Zhizhong1*
CLC Number:
| [1] JING Wenbo, JIN Tian, XIANG Deliang. Fast superpixel-based clustering algorithm for SAR image segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [2] 颜长春, 廖俊. 中国平台经济发展水平评价指标体系构建与测度[J]. 统计与决策, 2023, 39(11): 5-10. YAN Changchun, LIAO Jun. Platform of China economic development level evaluation index system construction and measure[J]. Journal of Statistics and Decision, 2023, 33(11): 5-10. [3] ZHAO Yuan, FANG Zhaoyu, LIN Cuixiang, et al. RFCell: a gene selection approach for scRNA-seq clustering based on permutation and Random Forest[J]. Frontiers in Genetics, 2021, 12: 665843. [4] GAO Tengfei, CHEN Dan, TANG Yunbo, et al. Adaptive density peaks clustering: towards exploratory EEG analysis[J]. Knowledge-Based Systems, 2022, 240: 108123. [5] LI Chuanwei, CHEN Hongmei, LI Tianrui, et al. A stable community detection approach for complex network based on density peak clustering and label propagation[J]. Applied Intelligence, 2022, 52(2): 1188-1208. [6] GUAN X, TERADA Y. Sparse kernel k-means for high-dimensional data[J]. Pattern Recognition, 2023, 144: 109873. [7] WANG W, YANG J, MUNTZ R. STING: a statistical information grid approach to spatial data mining[C] //Proceedings of 23rd International Conference on Very Large Data Bases. San Francisco, USA: ACM, 1997: 186-195. [8] ANDREAS L, ERICH S. BETULA: fast clustering of large data with improved BIRCH CF-Trees[J]. Information Systems, 2022, 108: 101918. [9] HUANG X G, MA T F, LIU C, et al. GriT-DBSCAN: a spatial clustering algorithm for very large databases[J]. Pattern Recognition, 2023, 142: 109658. [10] FU Nan, NI Weiwei, HU Haibo, et al. Multidime-nsional grid-based clustering with local differential privacy[J]. Information Sciences, 2023, 623: 402-420. [11] SUN Mingchen, YANG Mengduo, LI Yingji, et al. Structural-aware motif-based prompt tuning for graph clustering[J]. Information Sciences, 2023, 649: 119643. [12] WU Chengmao, YU Dongxue. Generalized possibilistic c-means clustering with double weighting exponents[J]. Information Sciences, 2023, 645: 119283. [13] RODRIGUZE A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. [14] WANG Y Z, QIAN J X, HASSAN M, et al. Density peak clustering algorithms: a review on the decade 2014—2023[J]. Expert Systems with Applications, 2024, 238: 121860. [15] WEI Xiuxiu, PENG Maosong, HUANG Huajuan, et al. An overview on density peaks clustering[J]. Neurocomputing, 2023, 554: 126633. [16] 陈叶旺, 申莲莲, 钟才明,等. 密度峰值聚类算法综述[J]. 计算机研究与发展, 2020, 57(2): 378-394. CHEN Yewang, SHEN Lianlian, ZHONG Caiming, et al. Survey on density peak clustering algorithm[J]. Journal of Computer Research and Development, 2020, 57(2): 378-394. [17] DING Shifei, DU Wei, LI Chao, et al. Density peaks clustering algorithm based on improved similarity and allocation strategy[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(4): 1527-1542. [18] ZHOU Zhou, SI Gangquan, SUN Haodong, et al. A robust clustering algorithm based on the identification of core points and KNN kernel density estimation[J]. Expert Systems with Applications, 2022, 195: 116573. [19] YAN Huan, WANG Mingzhao, XIE Juanying. ANN-DPC: density peak clustering by finding the adaptive nearest neighbors[J]. Knowledge-Based Systems, 2024, 294: 111748. [20] YU Donghua, LIU Guojun, GUO Maozu, et al. Density peaks clustering based on weighted local density sequence and nearest neighbor assignment[J]. IEEE Access, 2019, 7: 34301-34317. [21] ZHAO J, WANG G, PAN J S, et al. Density peaks clustering algorithm based on fuzzy and weighted shared neighbor for uneven density datasets[J]. Pattern Recognition, 2023, 139: 109406. [22] 赵嘉, 姚占峰, 吕莉, 等. 基于相互邻近度的密度峰值聚类算法[J]. 控制与决策, 2021, 36(3): 543-552. ZHAO Jia, YAO Zhanfeng, LÜ Li, et al. Density peaks clustering based on mutual neighbor degree[J]. Control and Decision, 2021, 36(3): 543-552. [23] GUAN Junyi, LI Sheng, HE Xiongxiong, et al. Fast hierarchical clustering of local density peaks via an association degree transfer method[J]. Neuro-computing, 2021, 445: 401-418. [24] GUO Wenjie, WANG Wenhai, ZHAO Shunping, et al. Density peak clustering with connectivity estimation[J]. Knowledge-Based Systems, 2022, 243: 108501. [25] QIAO Kaikai, CHEN Jiawei, DUAN Shukai. Self-adaptive two-stage density clustering method with fuzzy connectivity[J]. Applied Soft Computing, 2024, 154: 111355. [26] 赵嘉, 马清, 肖人彬,等. 面向流形数据的共享近邻密度峰值聚类算法[J]. 智能系统学报, 2023, 18(4): 719-730. ZHAO Jia, MA Qing, XIAO Renbin, et al. Shared neighbor density peak clustering algorithm for manifold data[J]. CAAI Transactions on Intelligent Systems, 2023, 18(4): 719-730. [27] CHENG Dongdong, ZHU Qingsheng, HUANG Jinlong, et al. Clustering with local density peaks-based minimum spanning tree[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(2): 374-387. [28] QIU Teng, LI Yongjie. Fast LDP-MST: an efficient density-peak-based clustering method for large-size datasets[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4767-4780. [29] MILAAN P. Clustering datasets[EB/OL].(2022-12-10)[2023-10-11]. https://github.com/milaan9/Clustering-Datasets [30] BLAKE C L, MERZ C J. UCI repository of machine database[EB/OL].(2023-09-29)[2023-10-15]. https://archive.ics.uci.edu/datasets [31] VINH N, EPPS J, BAILEY J. Information theoretic measures for clustering comparison: variants, properties, normalization and correction for chance[J]. Journal of Machine Learning Research, 2010, 11: 2837-2854. [32] DONALD W Z, BRUNO D Z. Relative power of the Wilcoxon Test, the Friedman Test, and Repeated-Measures ANOVA on Ranks[J]. The Journal of Experimental Education, 1993, 62(1): 75-86. |
| [1] | ZHU Hengdong, MA Yingcang, DAI Xuezhen. Adaptive semi-supervised neighborhood clustering algorithm [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 24-34. |
| [2] | XIE Ziqi, WANG Lihong, LI Man. Active learning of pairwise constraints in block diagonal subspace clustering [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 65-73. |
| [3] | ZHU Changming, YUE Wen, WANG Panhong, SHEN Zhenyu, ZHOU Rigui. Global and local multi-view multi-label learning with active three-way clustering [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 34-46. |
| [4] | Bei LI,Song ZHAO,Zhijia XIE,Meng NIU. Electric vehicle virtual energy storage available capacity modeling [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 101-111. |
| [5] | Jun QIN,Yuanpeng ZHANG,Yizhang JIANG,Wenlong HANG. Transfer fuzzy clustering based on self-constraint of multiple medoids [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 107-115. |
| [6] | Xinyu DONG,Hanyue CHEN,Jiaguo LI,Qingyan MENG,Shihe XING,Liming ZHANG. An unsupervised color image segmentation method based on fusion of multiple methods [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 96-101. |
| [7] | Yingxue ZHU,Ruizhang HUANG,Can MA. A short text dynamic clustering approach bias on new topic [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 8-18. |
| [8] | Qiyue SONG, Xuewen MU, Huan CHENG. Segmentation of connected characters based on improved drop-fall algorithm [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 89-94. |
| [9] | DU Xixi, LIU Huafeng, JING Liping. An additive co-clustering for recommendation of integrating social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 96-102. |
| [10] | YANG Tianpeng, XU Kunpeng, CHEN Lifei. Coefficient of variation clustering algorithm for non-uniform data [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 140-145. |
| [11] | ZHANG Peirui, YANG Yan, XING Huanlai, YU Xiuying. Incremental multi-view clustering algorithm based on kernel K-means [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 48-53. |
| [12] | PANG Renming, WANG Bo, YE Hao, ZHANG Haifeng, LI Mingliang. Clustering of blast furnace historical data based on PCA similarity factor and spectral clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 143-149. |
| [13] | ZHOU Wang, ZHANG Chenlin, WU Jianxin. Qualitative balanced clustering algorithm based on Hartigan-Wong and Lloyd [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 37-44. |
| [14] | JI Xingquan, HAN Guozheng, LI Kejun, FU Rongrong, ZHU Yanghe. Application of improved K-means clustering algorithm based on density in distribution network block partitioning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 41-46. |
| [15] | LI Shuo, SHI Yuliang. The method of spot cluster recommendation in location-based social networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 44-50. |
|