Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 8-18.doi: 10.6040/j.issn.1672-3961.0.2018.193
• Machine Learning & Data Mining • Previous Articles Next Articles
Yingxue ZHU1,2(),Ruizhang HUANG1,2,*(),Can MA1,2
CLC Number:
1 | YIN J, WANG J.A Dirichlet multinomial mixture model-based approach for short text clustering[C]//Proc of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: KDD'14.New York, USA: ACM, 2014: 233-242. |
2 | AHMED A, XING E P.Timeline: a dynamic hierarchical dirichlet process model for recovering birth/death and evolution of topics in text stream[C]//Proc of the 26th Conference on Uncertainty in Artificial Intelligence.New York, USA: AUAI Press, 2010: 20-29. |
3 | PITMAN J , YOR M . The two-parameter poisson dirichlet distribution derived from a stable subordinator[J]. Annals of Probability, 1995, 25 (2): 885- 900. |
4 | TEH Y W.A hierarchical bayesian language model based on pitman-yor processes[C]//Proc of the 21st Iternational Conference on Computational Linguistics and the Annual Meeting of the Association for Computational Linguistics.Sydney, Australia: ACM, 2006: 985-992. |
5 | PORTEOUS I, NEWMAN D, IHLER A, et al.Fast collapsed gibbs sampling for latent dirichlet allocation[C]//Proc of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Las Vegas, USA: ACM, 2008: 569-577. |
6 | BRUCE C , DONALD M , TREVOR S . Search engines: information retrieval in practice[M]. Boston, USA: Addison-Wesley, 2010: 22- 23. |
7 | HOFMANN T.Probabilistic latent semantic indexing[C]//Proc of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA: ACM, 1999: 50-57. |
8 | BLEI D M , NG A Y , JORDAN M I . Latent dirichlet allocation[J]. The Journal of Machine Learning Research, 2003, 3, 993- 1022. |
9 | BLEID M, LAFFERTY J D.Dynamic topic models[C]//Proc of the 23rd International Conference on Machine Learning (ICML′06).New York, USA: ACM, 2006: 113-120. |
10 | WEI X, SUN J, WANG X.Dynamic mixture models for multiple time-Series[C]// Proc of the 20th International Joint Conference on Artificial Intelligence.Hyderabad, India: ACM, 2007: 2909-2914. |
11 | IWATA T, WATANABE S, YAMADA T, et al.Topic tracking model for analyzing consumer purchase behavior[C]//Proc of 21st International Joint Conference on Artificial Intelligence.San Francisco, USA: ACM, 2009: 1427-1432. |
12 | WANG X, MCCALLUM A.Topics over time: a non-markov continuous-time model of topical trends[C]//Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA: ACM, 2006: 424-433. |
13 |
李雷, 朱玉婷, 施化吉, 等. 社会网络中基于U_BTM模型的主题挖掘[J]. 计算机应用研究, 2017, 34 (1): 132- 135, 146.
doi: 10.3969/j.issn.1001-3695.2017.01.028 |
LI Lei , ZHU Yuting , SHI Huaji , et al. Topic mining based on U_BTM model in social networks[J]. Application Research of Computers, 2017, 34 (1): 132- 135, 146.
doi: 10.3969/j.issn.1001-3695.2017.01.028 |
|
14 | 谢珺, 郝洁, 苏婧琼, 等. 一种针对短文本的主题情感混合模型[J]. 中文信息学报, 2017, 31 (1): 162- 168. |
XIE Jun , HAO Jie , SU Jingqiong , et al. A joint topic and sentiment model for short texts[J]. Journal of Chinese Information Processing, 2017, 31 (1): 162- 168. | |
15 | 刘泽锦, 王洁. 同主题词短文本分类算法中BTM的应用与改进[J]. 计算机系统应用, 2017, 26 (11): 213- 219. |
LIU Zejin , WANG Jie . Application and improvement of BTM in short text classification algorithm of the same topic[J]. Computer Systems & Applications, 2017, 26 (11): 213- 219. | |
16 | YAN X, GUO J, LAN Y, et al.A biterm topic model for short texts[C]//Proc of the 22nd International Conference on World Wide Web.New York, USA: ACM, 2013: 1445-1456. |
17 |
ZHOU X , OUYANG J , LI X . Two time-efficient gibbs sampling inference algorithms for biterm topic model[J]. Applied Intelligence, 2018, 48 (3): 730- 754.
doi: 10.1007/s10489-017-1004-2 |
18 |
CHENG X , YAN X , LAN Y , et al. BTM:topic modeling over short texts[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26 (12): 2928- 2941.
doi: 10.1109/TKDE.2014.2313872 |
19 | WANG Y, AGICHTEIN E, BENZI M.TM-LDA: efficient online modeling of latent topic transitions in social media[C]//Proc of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ′12).New York, USA: ACM, 2012: 123-131. |
20 | ZHAO W X , JIANG J , WENG J , et al. Comparing twitter and traditional media using topic models[J]. Berlin, Germany: Springer, 2011, 338- 349. |
21 | SASAKI K, YOSHIKAWA T, FURUHASHI T.Online topic model for twitter considering dynamics of user interests and topic trends[C] //Proc of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics.Doha, Qatar: ACL, 2014: 1977-1985. |
22 | LIANG S, YILMAZ E, KANOULAS E.Dynamic clustering of streaming short documents[C]//Proc of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD′16).New York, USA: ACM, 2016: 995-1004. |
23 | LIANG S, REN Z, YILMAZ E, et al.Collaborative user clustering for short text streams[C]//Proc of the 31st AAAI Conference on Artificial Intelligence.San Francisco, USA: ACM, 2017: 3504-3510. |
24 | 刘冰玉, 王翠荣, 王聪, 等. 基于动态主题模型融合多维数据的微博社区发现算法[J]. 软件学报, 2017, 28 (2): 246- 261. |
LIU Bingyu , WANG Cuirong , WANG Cong , et al. Microblog community discovery algorithm based on dynamic topic model with multidimensional data fusion[J]. Journal of Software, 2017, 28 (2): 246- 261. | |
25 | PHADIA E G . Prior processes and their applications[M]. New York, USA: Springer, 2016: 77- 79. |
26 | ZHONG S . Semi-supervised model-based document clustering: a comparative study[J]. Machine Learning, 2006, 65 (3): 3- 29. |
27 |
TEH Y W , JORDAN M I , BEAL M J , et al. Hierarchical dirichlet process[J]. Journal of American Statistical Association, 2006, 101 (476): 1566- 1581.
doi: 10.1198/016214506000000302 |
[1] | YAN Yingying, HUANG Ruizhang, WANG Rui, MA Can, LIU Bowei, HUANG Ting. A document understanding method for short texts by auxiliary long documents [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 67-74. |
[2] | LU Wenyang, XU Jiayi, YANG Yubin. LDA-based link prediction in social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 26-31. |
|