Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (2): 127-134.doi: 10.6040/j.issn.1672-3961.0.2022.122
Previous Articles Next Articles
XU Qianqian1, XU Qian2, XU Huachang1, ZHAO Yulin1, XU Kai2, ZHU Hong1*
CLC Number:
[1] | University of California San Francisco. Brain tumor center[EB/OL].(2019-01-01)[2021-05-25].https://braintumorcenter.ucsf.edu/condition. |
[2] | 马杰,刘芳.异柠檬酸脱氢酶1突变在胶质瘤免疫治疗中的研究进展[J]. 癌症进展, 2022, 20(2): 109-112. MA Jie, LIU Fang. Research progress of isocitrate dehydrogenase 1 mutation in glioma immunotherapy[J]. Cancer Progression, 2022, 20(2): 109-112. |
[3] | LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathologica, 2016, 131(6): 803-820. |
[4] | 李锐, 马林. IDH基因突变与胶质瘤相关性的研究进展[J]. 中国医学影像学杂志, 2020, 28(2): 142-145. LI Rui, MA Lin. Research progress on the correlation between IDH gene mutation and glioma[J]. Chinese Journal of Medical Imaging, 2020, 28(2): 142-145. |
[5] | WANG Shuo, SHI Jingyun, YE Zhaoxiang, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning[J]. European Respiratory Journal, 2019, 53(3): 1800986. |
[6] | YOGANANDA C G B, SHAH B R, VEJDANI-JAHROMI M,et al.A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas[J]. Neuro-Oncology, 2020, 22(3):402-411. |
[7] | 夏水伟, 周永进, 陈春妙,等. 基于MRI增强T1WI影像组学预测模型鉴别高级别胶质瘤IDH1突变型与野生型的价值[J]. 温州医科大学学报, 2021, 51(10): 800-805. XIA Shuiwei, ZHOU Yongjin, CHEN Chunmiao, et al. The value of MRI-enhanced T1WI radiomics prediction model in identifying IDH1 mutant and wild type in high-grade glioma[J]. Journal of Wenzhou Medical University, 2021, 51(10): 800-805. |
[8] | TAHA B, LI T H, BOLEY D, et al. Detection of isocitrate dehydrogenase mutated glioblastomas through anomaly detection analytics[J]. Neurosurgery, 2021, 89(2): 323-328. |
[9] | CHOI Y S, BAE S, CHANG J H, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J].Neuro-Oncology, 2021,23(2):304-313. |
[10] | QI Songtao, YU Lei, LI Hezhen, et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms[J].Oncology Letters, 2014, 7(6): 1895-1902. |
[11] | SONODA Y, SHIBAHARA I, KAWAGUCHI T, et al. Association between molecular alterations and tumor location and MRI characteristics in anaplastic gliomas[J].Brain Tumor Pathology, 2015, 32(2): 99-104. |
[12] | PAWLAK Z, GRZYMALA-BUSSE J, SLOWINSKI R, et al. Rough sets[J]. Communications of the ACM, 1995, 38(11): 88-95. |
[13] | LAMBIN P, RIOS-BELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012,48(4): 441-446. |
[14] | 胡云涛,黄小华, 刘念,等. 影像组学在原发性肝癌中的研究进展[J]. 国际医学放射学杂志, 2021,44(1): 76-80. HU Yuntao, HUANG Xiaohua, LIU Nian,et al. Research progress of radiomics in primary liver cancer[J]. International Journal of Medical Radiology, 2021,44(1): 76-80. |
[15] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Neural Information Processing Systems. California, USA:MIT Press, 2017:6000-6010. |
[16] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16SymboltB@16 words: transformers for image recognition at scale[C] //International Conference on Learning Representations. Vienna, Austria:[s.n] , 2021. |
[17] | ZHANG Lifei, FRIED D V, FAVE X J, et al. IBEX:an open infrastructure software platform to facilitate collaborative work in radiomics[J]. Medical Physics, 2015, 42(3): 1341-1353. |
[18] | 刘光宇,黄懿,曹禹,等. 基于灰度共生矩阵的图像纹理特征提取研究[J]. 科技风, 2021(12): 61-64. LIU Guangyu, HUANG Yi, CAO Yu, et al. Research on image texture feature extraction based on grey level co-occurrence matrix[J]. Technology Wind, 2021(12):61-64. |
[19] | 王铭,田为中,张继,等.基于TIRM序列的游程矩阵纹理特征联合ADC值预测乳腺癌Ki-67表达水平[J]. 放射学实践, 2021,36(12): 1520-1525. WANG Ming, TIAN Weizhong, ZHANG Ji, et al. Prediction of Ki-67 expression level in breast cancer based on run-length matrix texture feature combined with ADC value based on TIRM sequence[J]. Radiology Practice, 2021, 36(12):1520-1525. |
[20] | CHOI K S, CHOI S H, JEONG B.Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network[J]. Neuro-Oncology, 2019, 21(9):1197-1209. |
[1] | LIU Ziyi, CUI Chaoran, MENG Fan'an, LIN Peiguang. Multi-source-free domain adaptation with batch normalization statistics [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 102-108. |
[2] | Chunhong CAO,Hongxuan DUAN,Ling CAO,Lele ZHANG,Kai HU,Fen XIAO. Real-time semantic segmentation of high-resolution remote sensing image based on multi-level feature cascade [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 19-25. |
[3] | Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7. |
[4] | Yifei LI,Zunhua GUO. A Chirplet neural network for automatic target recognition [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 8-14. |
[5] | Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65. |
[6] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
[7] | Minghe GAO,Ying ZHANG,Rongrong ZHANG,Zihao HUANG,Linyan HUANG,Fanyu LI,Xin ZHANG,Yanhao WANG. Air quality prediction approach based on integrating forecasting dataset [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 91-99. |
[8] | Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14. |
[9] | Chengbin ZHANG,Hui ZHAO,Zongyu CAO. The vulnerability mining method for KWP2000 protocol based on deep learning and fuzzing [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 17-22. |
[10] | Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81. |
[11] | Hong CHEN,Xiaofei YANG,Qing WAN,Yingcang MA. Multi-label feature selection algorithm based on correntropy andmanifold learning [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 27-36. |
[12] | Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84. |
[13] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
[14] | HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95. |
[15] | CUI Xiaosong, WANG Ying, MENG Jia, ZOU Li. Online business self-evaluation system based on linguistic-valued similarity reasoning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 1-7. |
|