[1] |
University of California San Francisco. Brain tumor center[EB/OL].(2019-01-01)[2021-05-25].https://braintumorcenter.ucsf.edu/condition.
|
[2] |
马杰,刘芳.异柠檬酸脱氢酶1突变在胶质瘤免疫治疗中的研究进展[J]. 癌症进展, 2022, 20(2): 109-112. MA Jie, LIU Fang. Research progress of isocitrate dehydrogenase 1 mutation in glioma immunotherapy[J]. Cancer Progression, 2022, 20(2): 109-112.
|
[3] |
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathologica, 2016, 131(6): 803-820.
|
[4] |
李锐, 马林. IDH基因突变与胶质瘤相关性的研究进展[J]. 中国医学影像学杂志, 2020, 28(2): 142-145. LI Rui, MA Lin. Research progress on the correlation between IDH gene mutation and glioma[J]. Chinese Journal of Medical Imaging, 2020, 28(2): 142-145.
|
[5] |
WANG Shuo, SHI Jingyun, YE Zhaoxiang, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning[J]. European Respiratory Journal, 2019, 53(3): 1800986.
|
[6] |
YOGANANDA C G B, SHAH B R, VEJDANI-JAHROMI M,et al.A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas[J]. Neuro-Oncology, 2020, 22(3):402-411.
|
[7] |
夏水伟, 周永进, 陈春妙,等. 基于MRI增强T1WI影像组学预测模型鉴别高级别胶质瘤IDH1突变型与野生型的价值[J]. 温州医科大学学报, 2021, 51(10): 800-805. XIA Shuiwei, ZHOU Yongjin, CHEN Chunmiao, et al. The value of MRI-enhanced T1WI radiomics prediction model in identifying IDH1 mutant and wild type in high-grade glioma[J]. Journal of Wenzhou Medical University, 2021, 51(10): 800-805.
|
[8] |
TAHA B, LI T H, BOLEY D, et al. Detection of isocitrate dehydrogenase mutated glioblastomas through anomaly detection analytics[J]. Neurosurgery, 2021, 89(2): 323-328.
|
[9] |
CHOI Y S, BAE S, CHANG J H, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics[J].Neuro-Oncology, 2021,23(2):304-313.
|
[10] |
QI Songtao, YU Lei, LI Hezhen, et al. Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms[J].Oncology Letters, 2014, 7(6): 1895-1902.
|
[11] |
SONODA Y, SHIBAHARA I, KAWAGUCHI T, et al. Association between molecular alterations and tumor location and MRI characteristics in anaplastic gliomas[J].Brain Tumor Pathology, 2015, 32(2): 99-104.
|
[12] |
PAWLAK Z, GRZYMALA-BUSSE J, SLOWINSKI R, et al. Rough sets[J]. Communications of the ACM, 1995, 38(11): 88-95.
|
[13] |
LAMBIN P, RIOS-BELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012,48(4): 441-446.
|
[14] |
胡云涛,黄小华, 刘念,等. 影像组学在原发性肝癌中的研究进展[J]. 国际医学放射学杂志, 2021,44(1): 76-80. HU Yuntao, HUANG Xiaohua, LIU Nian,et al. Research progress of radiomics in primary liver cancer[J]. International Journal of Medical Radiology, 2021,44(1): 76-80.
|
[15] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Neural Information Processing Systems. California, USA:MIT Press, 2017:6000-6010.
|
[16] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16SymboltB@16 words: transformers for image recognition at scale[C] //International Conference on Learning Representations. Vienna, Austria:[s.n] , 2021.
|
[17] |
ZHANG Lifei, FRIED D V, FAVE X J, et al. IBEX:an open infrastructure software platform to facilitate collaborative work in radiomics[J]. Medical Physics, 2015, 42(3): 1341-1353.
|
[18] |
刘光宇,黄懿,曹禹,等. 基于灰度共生矩阵的图像纹理特征提取研究[J]. 科技风, 2021(12): 61-64. LIU Guangyu, HUANG Yi, CAO Yu, et al. Research on image texture feature extraction based on grey level co-occurrence matrix[J]. Technology Wind, 2021(12):61-64.
|
[19] |
王铭,田为中,张继,等.基于TIRM序列的游程矩阵纹理特征联合ADC值预测乳腺癌Ki-67表达水平[J]. 放射学实践, 2021,36(12): 1520-1525. WANG Ming, TIAN Weizhong, ZHANG Ji, et al. Prediction of Ki-67 expression level in breast cancer based on run-length matrix texture feature combined with ADC value based on TIRM sequence[J]. Radiology Practice, 2021, 36(12):1520-1525.
|
[20] |
CHOI K S, CHOI S H, JEONG B.Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network[J]. Neuro-Oncology, 2019, 21(9):1197-1209.
|