Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (3): 113-118.doi: 10.6040/j.issn.1672-3961.0.2020.159

Previous Articles     Next Articles

Comprehensive protection scheme for grounding fault in low resistance grounding system

HUANG Fuquan1, WANG Tinghuang1, ZHANG Haitai2, LIU Zijun1, LI Guodong1   

  1. 1. Shenzhen Power Supply Bureau Co., Ltd., Shenzhen 518000, Guangdong, China;
    2. Shandong Kehui Power Automation Co., Ltd., Zibo 255001, Shandong, China
  • Online:2021-06-20 Published:2021-06-24

Abstract: Because the existing grounding protection in low resistance grounding system had imcomplete protection configuration, poor selectivity, low sensitivity and insufficient ability to detect high-imedance grounding fault, the characteristics of zero sequence current while single-phase grounding fault occured in low resistance grounding system was analyzied. With the help of longitudinal cooperation between the upper and lower protections, the multistage grounding protection based on zero sequence current and the high sensitivity grounding protection based on low setting and time delay were proposed, and also the grounding protection configuration scheme and the setting principles at all levels were discussed. Fault line selection method was proposed for the high-impedance grounding fault using the lateral comparasion of the amplitudes of zero sequence currents between the outlet of each feeder and the neutral line. The feasibility and reliability of the proposed comprehensive protection scheme for grounding fault were verified by the simulation in a typical small resistance grounding distribution network.

Key words: low resistance grounding system, grounding protection, zero sequence current, high resistance grounding, comprehensive protection

CLC Number: 

  • TM773
[1] 徐丙垠, 李天友, 薛永端. 配电网继电保护与自动化[M]. 北京:中国电力出版社,2017.
[2] 刘育权, 蔡燕春, 邓国豪, 等. 小电阻接地方式配电系统的运行与保护[J]. 供用电,2015,32(6): 30-35. LIU Yuquan, CAI Yanchun, DENG Guohao, et al. Operation and protection in distribution system with small resistance grounding mode[J]. Distribution & Utilization,2015, 32(6): 30-35.
[3] 李海峰, 陈嘉权, 曾德辉, 等. 小电阻接地系统高灵敏性零序电流保护[J].电力自动化设备,2018,38(9): 198-204. LI Haifeng, CHEN Jiaquan, ZENG Dehui,et al. High sensitive zero-sequence current protection for low-resistance grounding system[J]. Electric Power Automatin Equipment, 2018, 38(9): 198-204.
[4] 林志超, 汪洋, 罗步升, 等. 小电阻接地系统高灵敏度接地保护配置与整定[J].电力系统及其自动化学报,2020,32(3): 25-32. LIN Zhichao, WANG Yang, LUO Busheng, et al. Configuration and tuning of high-sensitivity grounding fault protection for low-resistance grounding system[J]. Proceeding of the CSU-EPSA, 2020, 32(3):25-32.
[5] 薛永端, 刘珊, 王艳松, 等. 基于零序电压比率制动的小电阻接地系统接地保护[J].电力系统自动化, 2016,40(16):112-117. XUE Yongduan, LIU Shan, WANG Yansong, et al. Grounding fault protection in low resistance grounding system based on zero-sequence voltage ratio restraint[J]. Automation of Electric Power Systems,2016,40(16):112-117.
[6] 汪洋, 薛永端, 徐丙垠, 等. 小电阻接地系统接地故障反时限零序过电流保护[J].电力系统自动化,2018, 42(20):150-157. WANG Yang, XUE Yongduan, XU Bingyin. Zero-sequence inverse-time overcurrent protection in low resistance grounding system with grounding fault[J]. Automation of Electric Power Systems, 2018, 42(20):150-157.
[7] 许庆强, 许杨, 周栋骥, 等. 小电阻接地配电网线路保护单相高阻接地分析[J]. 电力系统自动化,2010,34(9):91-94. XU Qingqiang, XU Yang, ZHOU Dongji, et al. Analysis of distribution network line relay protection during single-phase high-resistance grounding faults in low resistance neutral grounded system[J]. Automation of Electric Power Systems, 2010, 34(9):91-94.
[8] 徐丙垠, 李天友, 薛永端, 等. 智能配电网建设中的继电保护问题[J]. 供用电,2012,39(3): 13-21. XU Bingyin, LI Tianyou, XUE Yongduan, et al. Relay protection issues in construction of smart distribution network lecture 3 service quality oriented distribution protection issues[J]. Distribution & Utilization, 2012, 39(3):13-21.
[9] 张良,徐丙垠. 配电网分支线保护的配置与整定[J].电网技术,2016,40(5):1589-1594. ZHANG Liang, XU Bingyin. Configuration and tuning of sub-feeder protection in distribution network[J]. Power System Technology, 2016, 40(5):1589-1594.
[10] 林志超,刘鑫星,王英民,等. 基于零序电流比较的小电阻接地系统接地故障保护[J].电力系统保护与控制,2018,46(22):15-21. LIN Zhichao, LIU Xinxing, WANG Yingmin, et al. Grounding fault protection based on zero sequence current comparison in low resistance grounding system[J]. Power System Protection and Control, 2018, 46(22):15-21.
[11] 盛亚如,丛伟,卜祥海,等. 基于中性点电流与零序电流投影量差动的小电阻接地系统高阻接地故障判断方法[J]. 电力自动化设备,2019,39(3):17-22. SHENG Yaru, CONG Wei, BU Xianghai, et al. Detection method of high impedance grounding fault based on differential current of zero-sequence current projection and neutral point current in low-resistance grounding system[J]. Electric Power Automation Equipment, 2019, 39(3):17-22.
[12] 耿建昭,王宾,董新洲,等. 中性点有效接地配电网高阻接地故障特征分析及检测[J].电力系统自动化,2013,37(16):85-91. GENG Jianzhao, WANG Bin, DONG Xinzhou, et al. Analysis and detection of high impedance grounding fault in neutral point effectively grounding distribution network[J]. Automation of Electric Power Systems, 2013, 37(16):85-91.
[13] KWON W H, LEE G W, PARK Y M. High impedance fault detection utilizing incremental variance of normalized even order harmonic power[J]. IEEE Trans on Power Delivery, 1991, 6(2):557-564.
[14] SAMANTARAY S R, PANIGRAHI B K, DASH P K. High impedance fault detection in power distribution networks using time-frequency transform and probabilistic neural network[J]. IET Generation, Transmission and Distribution, 2008, 2(2):261-270.
[15] HAGHIFAM M R, SEDIGHI A R, MALIK O P. Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection[J]. IEE Proceedings: Generation, Transmission and Distribution, 2006, 153(3):359-367.
[1] Youmin LI,Shouguo LÜ,Yang ZHOU,Yaxin NIE,Mingliang JIA,Bin BI. Novel traveling wave fault location method using overdetermined equations [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 95-100.
[2] JI Tao,SUN Tong-jing,XU Bing-yin,SUN Bo . Integrated methods to detect earth fault in DC systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 55-59 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[6] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[7] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[8] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[9] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[10] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .