Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 117-124.doi: 10.6040/j.issn.1672-3961.0.2019.504

• Electrical Engineering • Previous Articles     Next Articles

Research on BP neural network rainfall runoff forecasting model based on elastic gradient descent algorithm

Baoming JIN(),Guangyi LU,Wei WANG,Lunyue DU   

  1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
  • Received:2019-09-03 Online:2020-06-20 Published:2020-06-16
  • Supported by:
    福建省自然科学基金资助项目(2016J01734)

Abstract:

The improved elastic gradient descent algorithm of back propagation was used, and 14 rainfall runoff processes from 1997 to 2014 in the upper reaches of Chongyang River were selected. The back propagation (BP) neural network rainfall-runoff forecasting model of the elastic gradient descent algorithm was established, which took the measured rainfall of six rainfall stations in Yangzhuang, Wubian, Da′an, Kengkou, Lingyang, and Langu in the basin and the preliminary flow data of Wuyishan Hydrological Station as inputs, and selected the corresponding flow of Wuyishan Hydrological Station as output. The 7-rainfall runoff process was used to test the model, the test results showed that the proposed method required fewer parameters and had higher operation speed than the traditional back propagation algorithm. The prediction accuracy of the model could meet the requirements, and provide the basis for flood control and disaster reduction.

Key words: elastic gradient descent algorithm, BP neural network, rainfall runoff, forecasting model

CLC Number: 

  • TV124

Fig.1

Forward propagation diagram"

Fig.2

River system of the upper Chongyang River"

Fig.3

BP neural network structure with elastic gradient decline"

Fig.4

Seven flood prediction flow hydrographs in the upper reaches of Chongyang river"

Table 1

Prediction error analysis table of seven flood discharge processes in the upper reaches of Chongyang river"

洪水场次绝对误差绝对值平均值/(m3·s-1)相对误差绝对值平均值/%确定性系数
1998·06·1422.63.40.988
1999·06·1714.59.20.997
2003·06·2516.28.10.984
2005·06·1935.27.60.973
2007·06·1427.815.70.978
2008·07·1943.610.70.991
2013·05·2712.07.90.986

Table 2

Prediction error analysis table of seven flood peak discharge in the upper reaches of Chongyang river"

洪水场次峰型实测流量/(m3·s-1)预报流量/(m3·s-1)绝对误差/(m3·s-1)相对误差/%
1998·06·14主峰3 0802 929-151-4.9
1998·06·14次峰2 7102 689-21-0.8
1999·06·17主峰1 1701 192221.9
1999·06·17次峰988975-131.3
2003·06·25主峰797872759.4
2005·06·19主峰1 2501 277272.2
2005·06·19次峰1 1801 244645.4
2007·06·14主峰887943566.3
2008·07·19主峰2 2102 044-1667.5
2013·05·27主峰474425-499.3
平均值-1 4751 459645.0

Table 3

Prediction error analysis table of runoff depth of seven flood in the upper reaches of Chongyang river"

洪水场次实测径流深/mm预报径流深/mm绝对误差/mm相对误差/%
1998·06·14299.6301.01.40.5
1999·06·1798.7101.01.61.6
2003·06·2583.988.14.25.0
2005·06·19116.2119.12.92.5
2007·06·1436.139.23.18.6
2008·07·198587.32.32.7
2013·05·2723.223.90.93.1
平均值106.1108.52.33.4
1 张建云. 中国水文预报技术发展的回顾与思考[J]. 水科学进展, 2010, 21 (4): 435- 443.
ZHANG Jianyun . Review and reflection on China's hydrological forecasting techniques[J]. Advances in Water Science, 2010, 21 (4): 435- 443.
2 包红军, 王莉莉, 李致家, 等. 基于Holtan产流的分布式水文模型[J]. 河海大学学报(自然科学版), 2016, 44 (4): 340- 346.
BAO Hongjun , WANG Lili , LI Zhijia , et al. A distributed hydrological model based on Holtan runoff generation theory[J]. Journal of Hohai University(Natural Sciences), 2016, 44 (4): 340- 346.
3 何昳颖, 陈晓宏, 张云, 等. BP人工神经网络在小流域径流模拟中的应用[J]. 水文, 2015, (5): 35- 40.
doi: 10.3969/j.issn.1000-0852.2015.05.007
HE Yiying , CHEN Xiaohong , ZHANG Yun , et al. Application of BP neural network model in runoff simulating for small watershed[J]. Journal of China Hydrology, 2015, (5): 35- 40.
doi: 10.3969/j.issn.1000-0852.2015.05.007
4 王胜刚, 张莹, 徐应涛, 等. 基于打洞函数法的BP神经网络水文预报方法[J]. 运筹学学报, 2011, 15 (4): 45- 54.
doi: 10.3969/j.issn.1007-6093.2011.04.005
WANG Shenggang , ZHANG Ying , XU Yingtao , et al. The BP neural network hydrological forecasting algorithm based on tunneling function method[J]. Operations Research Transactions, 2011, 15 (4): 45- 54.
doi: 10.3969/j.issn.1007-6093.2011.04.005
5 NOURANI V . An emotional ANN (EANN) approach to modeling rainfall-runoff process[J]. Journal of Hydrology, 2017, 544, 267- 277.
doi: 10.1016/j.jhydrol.2016.11.033
6 杜拉, 纪昌明, 李荣波, 等. 基于小波-BP神经网络的贝叶斯概率组合预测模型及其应用[J]. 中国农村水利水电, 2015, (7): 50- 53.
doi: 10.3969/j.issn.1007-2284.2015.07.012
DU La , JI Changming , LI Rongbo , et al. Wavelet-BP neural network Bayesian probabilistic combination forecasting model and its application[J]. China Rural Water and Hydropower, 2015, (7): 50- 53.
doi: 10.3969/j.issn.1007-2284.2015.07.012
7 SEDKIA A , MAZOUDI E E . Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting[J]. Expert Systems with Applications, 2009, (36): 4523- 4527.
8 WANG Jianjin , PENG Shi . Application of BP neural network algorithm in tradition hydrological model for flood forecasting[J]. Water, 2017, 9 (1): 1- 16.
9 INAN C A , CANOGLU M C , KURTULUS B . A new artificial neural network model for the prediction of the rainfall-runoff relationship for La Chartreux Spring, France[J]. Fresenius Environmental Bulletin, 2018, 27 (11): 7354- 7363.
10 马江琦.基于奇异值分解和特征融合的人脸识别[D].济南:山东大学, 2016.
MA Jiangqi. Face recognition algorithm based on singular value decomposition and feature fusion[D]. Jinan: Shandong University, 2016.
11 ZHANG R , LEE E . Human face recognition used improved back-propagation (BP) neural network[J]. Journal of Korea Multimedia Society, 2018, 21 (4): 471- 477.
12 NARESH BABU , EDLA DAMODAR-REDDY . New algebraic activation function for multi-layered feed forward neural networks[J]. IETE Journal of Research, 2017, 63 (1): 71- 79.
doi: 10.1080/03772063.2016.1240633
13 邢茂琳, 周新志. 都江堰来水预测中BP网络训练方法的研究[J]. 微计算机信息, 2009, (34): 149- 150.
XING Maolin , ZHOU Xinzhi . Study of BP training method based on Dujiangyan water prediction[J]. Microcomputer Information, 2009, (34): 149- 150.
14 熊海晶.基于神经网络和小波分析的降水预报研究[D].南京:南京大学, 2012.
XIONG Haijing. Study on the precipitation forecast based on neural network and wavelet analysis[D]. Nanjing: Nanjing University, 2012.
15 RIEDMILLER M , BRAUN H . A direct adaptive method for faster back propagation learning: the RPROP algorithm[J]. International Conference on Neural Networks, San Francisco, USA: IEEI, 1993, 1, 586- 591.
16 袁曾任. 人工神经元网络及其应用[M]. 北京: 清华大学出版社, 1999.
17 赵振宇, 徐用懋. 模糊理论和神经网络的基础与应用[M]. 南宁: 广西科学技术出版社, 1996.
18 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水文情报预报规范: GB/T 22482—2008[S].北京:中国标准出版社, 2008.
[1] Diankun ZHENG,Tongle XU,Zhaojie YIN,Qingmin MENG. Prediction method of tailing dam groundwater levels based on improved PSO-BP neural network [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 108-113.
[2] LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83.
[3] ZHU Quan-yin1, YAN Yun-yang1, ZHOU Pei1, GU Tian-feng2. Price forecasting model based on linear backfilling and adaptive sliding windows [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 53-58.
[4] SHI Jun, ZHU Min. An optimization model for forecasting based on grey system and support vector machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 7-11.
[5] YAO Fu-an,PANG Xiang-kun,JIAO Ying-ying,WANG Zhong-lin,ZHANG Xi-man . Temperature detection of a rotary kiln based on three-color measurement and the BP neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 61-65 .
[6] GAO Xiao-wei,JIANG Xiao-yun . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 107-110 .
[7] ZHAO Yijun . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 81-83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[2] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[3] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[4] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[5] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[6] LIU Zhongguo,ZHANG Xiaojing,LIU Boqiang,LIU Changchun, . The development of ultrasonic characterization of the biological tissue elasticity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 34 -38 .
[7] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[8] HAO Ranhang,CHEN Shouyu . The theory, model and method of water resources evaluationombining quantity with quality[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 46 -50 .
[9] LI Fangjia, GAO Shangce, TANG Zheng*, Ishii Masahiro, Yamashita Kazuya. 3D similar pattern generation of snow crystals with cellular automata[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 102 -105 .
[10] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .