Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 118-128.doi: 10.6040/j.issn.1672-3961.0.2019.043
• Machine Learning & Data Mining • Previous Articles
Haijun ZHANG1(),Yinghui CHEN2,*()
CLC Number:
1 | NAIR Akhil . Prevention of cross site scripting (XSS) and securing web application atclient side[J]. International Journal of Emerging Technology and Computer Science, 2018, 3 (2): 83- 86. |
2 | RODRIGUEZ G E, BENAVIDES D E, TORRES J, et al. Cookie scout: an analytic model for prevention of cross-site scripting (XSS) using a cookie classifier[C]//Proceedings of the International Conference on Information Technology & Systems. Berlin, Germany: Springer Cham Press, 2018: 497-507. |
3 | XU K, GUO S, CAO N, et al. ECGLens: interactive visual exploration of large scale ECG data for arrhythmia detection[C]//Proceedings of the ACM CHI Conference on Human Factors in Computing Systems. Chicago, USA: ACM Press, 2018: 1-12. |
4 |
KAHNG M , ANDREWS P Y , KALRO A , et al. ActiVis: visual exploration of industry-scale deep neural network models[J]. IEEE Trans. Visualization and Computer Graphics, 2018, 24 (1): 88- 97.
doi: 10.1109/TVCG.2017.2744718 |
5 |
LIU M , SHI J , CAO K , et al. Analyzing the training processes of deep generative models[J]. IEEE Trans. Visualization and Computer Graphics, 2018, 24 (1): 77- 87.
doi: 10.1109/TVCG.2017.2744938 |
6 |
ZHANG Haijun , XIAO Nanfeng . Parallel implementation of multilayered neural networks based on Map-Reduce on cloud computing clusters[J]. Soft Computing, 2016, 20 (4): 1471- 1483.
doi: 10.1007/s00500-015-1599-3 |
7 | LI Yuanzhi, LIANG Yingyu. Learning overparameterized neural networks via stochastic gradient descent on structured data[EB/OL]. (2018-08-03)[2018-08-20]. https://arxiv.org/abs/1808.01204. |
8 | ZE Yuan, ZHU Allen, LI Yuanzhi, et al. On the convergence rate of training recurrent neural networks[J/OL]. arXiv: 1810.12065v4(2018-10-29)[2019-05-27]. https://arxiv.org/abs/1810.12065. |
9 | ZHANG Haijun , ZHANG Nan , XIAO Nanfeng . Fire detection and identification method based on visual attention mechanism[J]. Optik, 2015, 126 (6): 5011- 5018. |
10 | CHEN Minmin, JEFFREY Pennington, SAMUEL S S. Dynamical isometry and a mean field theory of RNNs: gating enables signal propagation in recurrent neural networks[EB/OL]. (2018-06-14)[2019-02-08]. http://proceedings.mlr.press/v80/chen18i.html. |
11 | ANDROS Tjandra, SAKRIANI Sakti, SATOSHI Nakamura. Tensor decomposition for compressing recurrent neural network[EB/OL]. (2018-02-28)[2018-05-08]. https://arxiv.org/abs/1802.10410. |
12 | CHEN Qufei, MARINA Sokolova. Word2Vec and Doc2Vec in unsupervised sentiment analysis of clinical discharge summaries[EB/OL]. (2018-05-01)[2018-05-01]. https://arxiv.org/abs/1805.00352. |
13 | DL4J.Word2Vec, Doc2vec & GloVe: Neural word embeddings for natural language processing[EB/OL]. (2018-03-01)[2018-06-05]. https://deeplearning4j.org/docs/latest/deeplearning4j-nlp-word2vec. |
14 | RINA Panigrahy, SUSHANT Sachdeva, ZHANG Qiuyi. Convergence results for neural networks via electrodynamics[J/OL]. arXiv: 1702.00458v5(2017-02-01)[2018-12-04]. https://arxiv.org/abs/1702.00458. |
15 | BORDERS Florian, BERTHIER Tess, JORIO L D, et al. Iteratively unveiling new regions of interest in deep learning models[EB/OL]. (2018-04-11)[2018-06-11]. https://openreview.net/forum?id=rJz89iiiM. |
16 | KINDERMANS P J, KRISTOF T S, MAXIMILIAN Alber, et al. Learning how to explain neural networks: patternnet and pattern attribution[EB/OL]. (2017-05-16)[2017-10-24]. https://arxiv.org/abs/1705.05598. |
17 | CHOO Jaegul , LIU Shixia . Visual analytics for explainable deep learning[J]. Computer Graphics and Applications IEEE, 2018, 38 (4): 84- 92. |
18 | SMILKOV Daniel, THORAT Nikhil, KIM Been, et al. Smoothgrad: removing noise by adding noise[J/OL]. arXiv: 1706.03825v1(2017-06-12)[2017-06-12]. https://arxiv.org/abs/1706.03825. |
19 |
CHEN H , CHIANG R H L , STOREY V C . Business intelligence and analytics: From big data to big impact[J]. MIS Quarterly, 2012, 36 (4): 1165- 1188.
doi: 10.2307/41703503 |
20 |
KWON O , LEE N , SHIN B . Data quality management, data usage experience and acquisition intention of big data analytics[J]. International Journal of Information Management, 2014, 34 (3): 387- 394.
doi: 10.1016/j.ijinfomgt.2014.02.002 |
21 | TAF F, BIG D C. Demystifying big data: a practical guide to transforming the business of government[EB/OL]. (2012-10-01)[2012-10-05]. http://www.techamerica.org/Docs/fileManager.cfm?f=techamerica-bigdatareport-final.pdf. |
22 | TRIGUERO Isaac , PERALTA Daniel , BACARDIT Jaume , et al. MRPR: a MapReduce solution for prototype reduction in big data classification[J]. Neurocomputing, 2015, 150 (1): 331- 345. |
[1] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
[2] | XIE Zhifeng, WU Jiaping, MA Lizhuang. Chinese financial news classification method based on convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 34-39. |
[3] | LIU Yang, LIU Bo, WANG Feng. Optimization algorithm for big data mining based on parameter server framework [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 1-6. |
[4] | WEI Bo, ZHANG Wensheng, LI Yuanxiang, XIA Xuewen, LYU Jingqin. A sparse online learning algorithm for feature selection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 22-27. |
[5] | DONG Ai-Feng, DIAO Ge-Ji, SCHOMMER Christoph. A fingerprint engine for author profiling [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 27-31. |
|