JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (5): 79-88.doi: 10.6040/j.issn.1672-3961.0.2017.255

Previous Articles     Next Articles

A new distributed formation for multi-agent systems with constant time delays

QIN Liguo1, HE Xiao1, ZHOU Donghua1,2*   

  1. 1. Department of Automation, Tsinghua University, Beijing 100084, China;
    2. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-02-10

Abstract: A new delay independent distributed formation control law was presented for a network of second-order integrators subject to constant time delays. A new augment variable which represented the integration of distributed formation errors was introduced to improve the robustness of the formation control law. Different from current distributed control laws, the presented control law was robust to some constant bias faults. A condition on the existence of the delay independent formation control law was proposed by using Nyquist stability criterion. The simulation demonstrated the effectiveness of the control law.

Key words: distributed control, frequency-domain analysis, formation, time delays, Nyquist stability criterion, transfer function

CLC Number: 

  • TP277
[1] BEARD R W, LAWTON J, HADAEGH F Y. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790.
[2] BALCH T, ARKIN R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
[3] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
[4] LIN Z, FRANCIS B, MAGGIORE M. Necessary and sufficient graphical conditions for formation control of unicycles[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127.
[5] OH K K, AHN H S. Formation control of mobile agents based on distributed position estimation[J]. IEEE Transactions on Automatic Control, 2013, 58(3): 737-742.
[6] 吕淑玲, 侍红军, 刘峰. 主从多智能体网络快速随机一致性[J]. 山东大学学报(理学版), 2014, 49(1): 65-70. LYU Shuling, SHI Hongjun, LIU Feng. Fast stochastic consensus of leader-following multi-agent network[J]. Journal of Shandong University(Nature Science), 2014, 49(1):65-70.
[7] QIN L, HE X, ZHOU D H. A survey of fault diagnosis for swarm systems[J]. Systems Science & Control Engineering, 2014, 2(1): 13-23.
[8] 王强, 王玉振. Hamilton 框架下 Flocking 问题控制协议的设计[J]. 山东大学学报(理学版), 2011, 46(7): 70-76. WANG Qiang, WANG Yuzheng. Flocking control protocol design based on a Hamiltonian framework[J]. Journal of Shandong University(Nature Science), 2011, 46(7):70-76.
[9] QIN L, HE X, ZHOU Y, et al. Fault-tolerant control for a quadrotor unmanned helicopter subject to sensor faults[C] //IEEE Conference on Unmanned Aircraft Systems(ICUAS)2016. [s. n.] : IEEE, 2016: 1280-1286.
[10] 孙一冰, 付敏跃, 王炳昌, 等. 大规模动态系统的分布式状态估计算法[J]. 山东大学学报(工学版), 2016, 46(6): 62-68. SUN Yibing, FU Minyue, WANG Bingchang, et al. Distributed state estimation algorithm for large-scale dynamic systems[J]. Journal of Shandong University(Engineering Science), 2016, 46(6):62-68.
[11] EGERSTEDT M, HU X. Formation constrained multi-agent control[J]. IEEE Transactions on Robotics and Automation, 2001, 17(6): 947-951.
[12] CHEN Y Q, WANG Z. Formation control: a review and a new consideration[C] //IEEE International Conference on Intelligent Robots and Systems 2005:IROS 2005. Edmonton, Canada: IEEE, 2005: 3181-3186.
[13] DAS A K, FIERRO R, KUMAR V, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 813-825.
[14] DONG X, YU B, SHI Z, et al. Time-varying formation control for unmanned aerial vehicles: theories and applications[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348.
[15] OLFATI S R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533.
[16] SUN Y G, WANG L. Consensus of multi-agent systems in directed networks with nonuniform time-varying delays[J]. IEEE Transactions on Automatic Control, 2009, 54(7): 1607-1613.
[17] XIAO F, WANG L. Consensus protocols for discrete-time multi-agent systems with time-varying delays[J]. Automatica, 2008, 44(10): 2577-2582.
[18] LIN P, JIA Y. Multi-agent consensus with diverse time-delays and jointly-connected topologies[J]. Automatica, 2011, 47(4): 848-856.
[19] ABDESSAMEUD A, TAYEBI A. Formation control of VTOL unmanned aerial vehicles with communication delays[J]. Automatica, 2011, 47(11): 2383-2394.
[20] REZAEE H, ABDOLLAHI F, TALEBI H A. H based motion synchronization in formation flight with delayed communications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6175-6182.
[21] DONG X, XI J, LU G, et al. Formation control for high-order linear time-invariant multiagent systems with time delays[J]. IEEE Transactions on Control of Network Systems, 2014, 1(3): 232-240.
[22] TIAN Y P, LIU C L. Consensus of multi-agent systems with diverse input and communication delays[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2122-2128.
[23] TIAN Y P, LIU C L. Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations[J]. Automatica, 2009, 45(5): 1347-1353.
[24] MÜNZ U, PAPACHRISTODOULOU A, ALLGOWER F. Delay robustness in consensus problems[J]. Automatica, 2010, 46(8): 1252-1265.
[25] HOU W, FU M, ZHANG H, et al. Consensus conditions for general second-order multi-agent systems with communication delay[J]. Automatica, 2017, 75: 293-298.
[1] CHEN Haiyong, YU Li, LIU Hui, YANG Jiabo, HU Qidi. Solar cell defect images fusion based on empirical wavelet [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 24-31.
[2] WANG Qi, SUN Zhumei, LIU Shaohong, BAI Jianyun. Integration transform of dust removal system based on fieldbus compatible technology [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 37-41.
[3] LI Wei, WANG Zhechao, LI Shucai, DING Wantao, WANG Qi, ZONG Zhi, LIU Keqi. The mechanical properties of the silty clay and the advanced support method in Harbin Metro [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 61-71.
[4] DING Xiaoling, ZHAO Qiang, LI Yibin, MA Xin. Modified target recognition algorithm based on template matching [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 1-7.
[5] SONG Guijie. Deformation characteristic and instability analysis for shallow soft rock section during tunnel-entering construction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 53-60.
[6] TANG Leshuang, TIAN Guohui, HUANG Bin. An object fusion recognition algorithm based on DSmT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 50-56.
[7] HAN Xueshan, WANG Junxiong, SUN Donglei, LI Wenbo, ZHANG Xinyi, WEI Zhiqing. Nodal load forecasting method considering spatial correlation and redundancy [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 7-12.
[8] CHU Xiaodong, TANG Maosen, GAO Xu, LIU Weisheng, JIA Shanjie, LI Sun. Robust optimal dispatch of active distribution networks based on centralized information system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 20-25.
[9] ZHANG Guojian, YU Chengxin, GUO Guangli. Application of digital close-range photogrammetry in the deformation observation of check gate [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 46-51.
[10] ZHANG Xihua, LU Shanshan, SU Jianjun. Countermeasure and technology patent development of global energy interconnection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 143-150.
[11] ZHOU Zhijie, ZHAO Fujun, HU Changhua, WANG Li, FENG Zhichao, LIU Taoyuan. Failure prognosis method based on evidential reasoning for aerospace relay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 22-29.
[12] ZHAO Yinghong, HE Xiao, ZHOU Donghua. Fault tolerant estimation for a class of networked systems with sensor faults [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 71-78.
[13] WU Jianping, JIANG Bin, LIU Jianwei. Fault diagnosis of asynchronous motor based on wavelet packet entropy and wavelet neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 223-228.
[14] HUANG Yanhui, FAN Yangyu, SU Xuhui. 3D facial expression tracking using a monocular RGB camera [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 7-13.
[15] CHEN Weizhong, CHEN Feifei, ZHAO Wusheng, ZHANG Yuelin. TBM tunnel segment dislocation due to large deformation and reinforcement mechanism on surrounding rockmass [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!