JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (3): 79-83.doi: 10.6040/j.issn.1672-3961.0.2016.058
Previous Articles Next Articles
MAO Beixing, WANG Dongxiao
CLC Number:
[1] YASSEN M T. Controlling chaos and synchronization for new chaotic system using linear feedback control[J].Chaos,Solition & Fractals, 2005, 26(3):913-920. [2] CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos, Solition & Fractals, 2009, 41(5):2716-2724. [3] PECORA L M, CAROLL T L. Synchronization in chaotic systems[J]. Physics Review Letters, 1990, 64(8):821-824. [4] WU X J, LU H T. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters[J]. Chaos, Solition & Fractals, 2011, 44(10):820-810. [5] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with with stochastic unknown parameters[J].Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519. [6] SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learing control[J].Chinese Physics B, 2010, 19(2):502-505. [7] YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J].Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413. [8] AGHABABA M P, AKBARI M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J].Applied Mathematics and Computation, 2012, 218(9):5757-5768. [9] AGHABABA M P, HEYDARI A. Chaos synchronization between two different chaotic systems with uncertainties,external disturbances,unknown parameters and input nonlinearities[J].Applied Mathematical Modlling, 2012, 36(4):1639-1652. [10] LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unkown parameters and external disturbances[J].Nonlinear Dynamics, 2012, 70(1):585-599. [11] 毛北行,张玉霞. 具有非线性耦合复杂网络混沌系统的有限时间同步[J].吉林大学学报(理学版),2015,53(4):757-761. MAO Beixing, ZHANG Yuxia. Finite-time chaos synchronization of complex networks systems with nonlinear coupling[J].Journal of Jilin University(Science Edition), 2015, 53(4):757-761. [12] 孙宁,张化光,王智良. 不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报(工学版),2010,44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J].Journal of Zhejiang University(Engineering Science Edition), 2010, 44(7):1288-1291. [13] 余明哲,张友安. 一类不确定分数阶混沌系统的滑模自适应同步[J].北京航空航天大学学报,2014,40(9):1276-1280. YU Mingzhe, ZHANG Youan. Sliding mode adaptive synchronization for a class of fractional-orderchaotic systems with uncertainties[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1276-1280. [14] 仲启龙,邵永辉,郑永爱. 分数阶混沌系统的主动滑模同步[J].动力学与控制学报,2015,13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Synchronization of the fractional order chaotic systems based on TS Models[J]. Journal of Dynamics and Control, 2015, 13(1):18-22. [15] 张燕兰. 分数阶Rayleigh-Duffling-like系统的自适应追踪广义投影同步[J].动力学与控制学报,2014,12(4):348-352. ZHANG Yanlan. Adaptive tracking generalized projective synchronization of fractional Rayleigh-Duffling-like system[J].Journal of Dynamics and Control, 2014, 12(4):348-352. [16] 王震,吴云天,邹永杰. 多涡卷Jerk电路混沌系统的分析与滑模控制[J].西安电子科技大学学报,2009,27(6):765-768. WANG Zhen, WU Yuntian, ZOU Yongjie. Analysis and sliding control of multi-scroll jerk circuit chaotic system[J]. Journal of Xi'an University of Science and Technology, 2009, 27(6):765-768. [17] 刘恒,余海军,向伟. 带有未知扰动的多涡卷混沌系统修正函数时滞投影同步[J].物理学报,2012,61(18):5031-5036. LIU Heng, YU Haijun, XIANG Wei. Modified function projective lag synchronization for multi-scroll chaotic system with unknown disturbances[J]. Acta Phys Sin, 2012, 61(18):5031-5036. [18] 刘华明. 多涡卷四阶Jerk系统的仿真研究[J].井冈山大学学报(自然科学版),2013,34(4):59-63. LIU Huaming. Simulation investigation multi-scroll four-order jerk systm[J].Journal of Jinggangshan University(Naturnal Science), 2013, 34(4):59-63. [19] Podlubny. Fractional differential equation[M]. New York: Academic Press, 1999. [20] 梅生伟,申铁龙,刘志康.现代鲁棒控制理论与应用[M]. 北京:清华大学出版社,2003. |
[1] | WANG Dongxiao. Two methods for sliding mode synchronization of five-dimensional fractional-order chaotic systems with entanglement iterms [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 85-90. |
[2] | WANG Chunyan, DI Jinhong. Synchronization control of fractional-order multi-scroll chaotic system based on reduced-order method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 91-94. |
[3] | MENG Xiaoling, WANG Jianjun. Chaos synchronization of a class of fractional-order coronary artery systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 55-60. |
[4] | MAO Beixing, CHENG Chunrui. Self-adaptive sliding mode control of fractional-order Victor-Carmen chaotic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 31-36. |
[5] | LI Qingbin, WANG Xiaodong. Terminal sliding model control chaos synchronization of fractional-order emotion mode systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 84-88. |
[6] | JIN Xin,JIANG Ming-yan . Chaos synchronization control for a new chaotic system with diverse structures base on nonlinear control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 78-82 . |
|