JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (3): 49-55.doi: 10.6040/j.issn.1672-3961.0.2016.310
Previous Articles Next Articles
LI Lu, FAN Wentao, DU Jixiang*
CLC Number:
[1] 江贵平, 秦文健, 周寿军,等. 医学图像分割及其发展现状[J].计算机学报, 2015, 38(6):1222-1242. JIANG Guiping, QIN Wenjia, ZHOU Shoujun, et al. State-of-the-art in medical image segmentation [J]. Chinese Journal of Computers, 2015, 38(6):1222-1242. [2] ZHANG H, WEN T, ZHENG Y, et al. Two fast and robust modified Gaussian mixture models incorporating local spatial information for image segmentation [J].Journal of Signal Processing Systems, 2015, 81(1):45-58. [3] NGUYEN T M, WU Q M J. Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem[J].IEEE Transactions on Systems,Man and Cybernetics, Part B(Cybernetics), 2012, 42(1):193-202. [4] ZHANG Y, BRADY M, SMITH S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm [J].IEEE Transactions on Medical Imaging, 2001, 20(1):45-57. [5] JI Z, XIA Y, SUN Q, et al. Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation[J].Neurocomputing, 2014, 134(6):60-69. [6] JI J, WANG K L. A fuzzy clustering algorithm with robust spatially constraint for brain MR image segmentation[C] //Proceedings of the 2014 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE).Beijing, China:IEEE, 2014:202-209. [7] JI Z, LIU J, CAO G, et al. Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation[J].Pattern Recognition, 2014, 47(7):2454-2466. [8] SHAO G, GAO J, WANG T, et al. Fuzzy c-means clustering with a new regularization term for image segmentation[C] //Proceedings of the 2014 International Joint Conference on Neural Networks(IJCNN).Beijing, China:IEEE, 2014: 2862-2869. [9] DONG F, PENG J. Brain MR image segmentation based on local Gaussian mixture model and nonlocal spatial regularization[J].Journal of Visual Communication & Image Representation, 2014, 25(5):827-839. [10] GREENSPAN H, RUF A, GOLDBERGER J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images[J]. IEEE Transactions on Medical Imaging, 2006, 25(9):1233-1245. [11] SONG Y, JI Z, SUN Q. An extension Gaussian mixture model for brain MRI segmentation[J]. Conference: International Conference of the IEEE Engineering in Medicine & Biology Society IEEE Engineering in Medicine & Biology Society Conference. Conf Proc IEEE Eng Med Biol Soc, 2014:4711-4714. [12] BALAFAR M A, RAMLI A R, SARIPAN M I, et al. Review of brain MRI image segmentation methods[J]. Artificial Intelligence Review, 2010, 33(3):261-274. [13] SKIBBE H, REISERT M, BURKHARDT H. Gaussian neighborhood descriptors for brain segmentation [C] //Proceedings of the 12th IAPR Conference on Machine Vision Applications(MVA 2011). Nara, Japan: IAPR, 2011:35-38. [14] SFIKAS G, NIKOU C, GALATSANOS N. Robust image segmentation with mixtures of student's t-distributions[C] //Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, USA:IEEE, 2007: I-273-I-276. [15] SFIKAS G, NIKOU C, GALATSANOS N, et al. MR brain tissue classification using an edge-preserving spatially variant Bayesian mixture model[J].Medical Image Computing and Computer-assisted Intervention-MICCAI 2008, 2008, 11(1):43-50. [16] SFIKAS G, NIKOU C, GALATSANOS N, et al. Spatially varying mixtures incorporating line processes for image segmentation[J].Journal of Mathematical Imaging and Vision, 2010, 36(2):91-110. [17] DIPLAROS A, VLASSIS N, GEVERS T. A spatially constrained generative model and an EM algorithm for image segmentation[J].IEEE Transactions on Neural Networks, 2007, 18(3):798-808. [18] NIKOU C, GALATSANOS N P, LIKAS A C. A class-adaptive spatially variant mixture model for image segmentation[J].IEEE Transactions on Image Processing, 2007, 16(4):1121-1130. [19] BLEKAS K, LIKAS A, GALATSANOS N P, et al. A spatially constrained mixture model for image segmentation[J].IEEE Transactions on Neural Networks, 2005, 16(2):494-498. [20] NGUYEN T M, WU Q M J. Robust student's-t mixture model with spatial constraints and its application in medical image segmentation[J].IEEE Transactions on Medical Imaging, 2012, 31(1):103-116. [21] NIKOU C, LIKAS A C, GALATSANOS N P. A Bayesian framework for image segmentation with spatially varying mixtures[J].IEEE Transactions on Image Processing, 2010, 19(9):2278-2289. [22] ASHBURNER J, FRISTON K J. Unified segmentation[J].Neuroimage, 2005, 26(3):839-851. [23] PEEL D, MCLACHLAN G J. Robust mixture modeling using the t distribution[J].Statistics & Computing, 2000, 10(4):339-348. [24] NGUYEN T M, WU Q M J. Fast and robust spatially constrained Gaussian mixture model for image segmentation[J].IEEE Transactions on Circuits & Systems for Video Technology, 2013, 23(4):621-635. [25] CHATZIS S P, VARVARIGOU T A. A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation[J].IEEE Transactions on Fuzzy Systems, 2008, 16(5):1351-1361. |
[1] | SHI Qingxuan, WANG Qian, TIAN Xuedong. Cascaded tracklet-based spatio-temporal model for video pose estimation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 14-21. |
[2] | MENG Lingheng, DING Shifei. Depth perceptual model based on the single image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 37-43. |
[3] | REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 1-6. |
|