JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (3): 43-48.doi: 10.6040/j.issn.1672-3961.0.2016.306

Previous Articles     Next Articles

The video synopsis based on the enhanced ViBe algorithm

HUI Kaifa, CHENG Keyang, ZHAN Yongzhao   

  1. School of Computer Science and Telecommunications Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2016-07-22 Online:2017-06-20 Published:2016-07-22

Abstract: Focusing on the time redundancy of surveillance video, an enhanced ViBe was proposed to solve the problems of noise and the ghost in ViBe algorithm. The improved algorithm was applied in the procession of video background modelling. It could be determined whether there was a foreground object in a certain frame by extracting outside contour of the obtained binary image, and the frames contains foreground objects would be pushed into the video stream for the purpose of video synopsis. After the experimental verification, it could be concluded that the method could effectively reduce the redundant information in the video and the volume of the video. Meanwhile some important information in the video could be retained, and the algorithm satisfied the requirement of real-time.

Key words: video surveillance, video synopsis, background modelling, object detection, ViBe algorithm, ghost suppression

CLC Number: 

  • TP391
[1] 王娟, 蒋兴浩, 孙锬锋.视频摘要技术综述[J]. 中国图象图形学报, 2014, 19(12):1685-1695. WANG Juan, JIANG Xinghao, SUN Tanfeng. Review of video abstraction[J].Journal of Image and Graphics, 2014, 19(12):1685-1695.
[2] ZHU X, CHEN L C, GONG S. Video synopsis by heterogeneous multi-source Correlation[C] //IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013:81-88.
[3] RAVACHA A, PRITCH Y, PELEG S. Making a long video short: dynamic video synopsis[C] //IEEE Computer Society Conference on Computer Vision & Pattern Recognition. New York, USA: IEEE Computer Society, 2006:435-441.
[4] LI K, YAN B, WANG W, et al. An effective video synopsis approach with seam carving[J]. Signal Processing Letters IEEE, 2016, 23(1):11-14.
[5] HUANG C R, CHEN H C, CHUNG P C. Online surveillance video synopsis[C] //IEEE International Symposium on Circuits and Systems. Seoul, Korea: IEEE, 2012.
[6] 韩建康. 基于运动检测及跟踪的视频浓缩方法研究[D]. 北京:北京邮电大学, 2012. HAN Jiankang. Moving area detection and tracking based video condensation[D]. Beijing: Beijing University of Posts and Telecommunications, 2012.
[7] NAM J H, TEWFIK A H. Video abstract of video[C] //Multimedia Signal Processing. Copenhagen, Denmark: IEEE, 1999:117-122.
[8] PETROVIC N, JOJIC N, HUANG T S. Adaptive video fast forward[J]. Multimedia Tools & Applications, 2005, 26(3):327-344.
[9] PENG J, QIN X. Keyframe-based video summary using visual attention clues[J]. IEEE Multimedia, 2009, 17(2):64-73.
[10] 王秀芬, 王汇源, 王松. 基于背景差分法和显著性图的海底目标检测方法[J]. 山东大学学报(工学版), 2011, 41(1):12-16. WANG Xiufen, WANG Huiyuan, WANG Song. Underwater object detection based on background subtraction and a saliency map[J]. Journal of Shandong University(Engineering Science), 2011, 41(1):12-16.
[11] 王海军, 葛红娟, 张圣燕. 基于L1范数和最小软阈值均方的目标跟踪算法[J]. 山东大学学报(工学版), 2016, 46(3):14-22. WANG Haijun,GE Hongjuan, ZHANG Shengyan. Object tracking via L1 norm and least soft-threshold square[J]. Journal of Shandong University(Engineering Science), 2016, 46(3):14-22.
[12] HUANG C R, CHUNG P C J, YANG D K, et al. Maximum a posteriori probability estimation for online surveillance video synopsis[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2014, 24(8):1417-1429.
[13] BARNICH O, VAN D M. ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2011, 20(6):1709-1724.
[14] BARNICH O, DROOGENBROECK M V. ViBe: a powerful random technique to estimate the background in video sequences[C] //IEEE International Conference on Acoustics. Taipei, China: IEEE, 2009:945-948.
[15] 张磊, 傅志中, 周岳平. 基于HSV颜色空间和ViBe算法的运动目标检测[J]. 计算机工程与应用, 2014, 50(4):181-185. ZHANG Lei, FU Zhizhong, ZHOU Yueping. Moving objects detection based on HSV colorspace and Vibe algorithm[J]. Computer Engineering and Applications, 2014, 50(4):181-185.
[16] 王文豪, 周泓, 严云洋. 一种基于连通区域的轮廓提取方法[J]. 计算机工程与科学, 2011, 33(6):67-71. WANG Wenhao, ZHOU Hong, YAN Yunyang. An approach to contour extraction based on connected regions[J]. Computer Engineering and Science, 2011, 33(6):67-71.
[17] 孙水发, 覃音诗, 马先兵,等. 室外视频前景检测中的形态学改进ViBe算法[J]. 计算机工程与应用, 2013, 49(10):159-162. SUN Shuifa, QIN Yinshi, MA Xianbing, et al. ViBe foreground detection algorithm and its improvement with morphology post-processing for outdoor scene[J]. Computer Engineering and Applications, 2013, 49(10):159-162.
[18] LI L, HUANG W, GU Y H, et al. Statistical modeling of complex backgrounds for foreground object detection[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Proceeding Society, 2004, 13(11):1459-1472.
[19] FERRYMAN J, SHAHROKNI A. PETS 2009: dataset and challenge[C] //The 12th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Miami, USA: IEEE, 2009:1-6.
[20] WANG W H, ZHOU H, YAN Y Y. An approach to contour extraction based on connected regions[J]. Computer Engineering and Science, 2011, 33(6):67-71.
[21] SUZUKI S, BE K. Topological structural analysis of digitized binary images by border following[J]. Computer Vision Graphics & Image Processing, 1985, 30(1):32-46.
[1] LIU Yingxia, WANG Xichang, TANG Xiaoli, CHANG Faliang. Object detection algorithm based on Bayesian probability estimation in wavelet domain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 63-70.
[2] QIAO Wei1, WANG Hui-yuan1,2, WU Xiao-juan1, LIU Peng-wei1. Crowd object detection and classification based on a chaotic dynamic model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 19-23.
[3] LV Xing,SHI Zhong-ke . Design and implementation of a realtime motion detection method based on DirectShow [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 5-9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!