JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (1): 15-21.doi: 10.6040/j.issn.1672-3961.0.2016.304
Previous Articles Next Articles
FANG Hao, LI Yun*
CLC Number:
[1] SONG Q, JIA Z, SHEPPERD M, et al. A general software defect-proneness prediction framework[J].IEEE Transactions on Software Engineering, 2011, 37(3):356-370. [2] MUNSON J C, KHOSHGOFTAAR T M. Regression modelling of software quality: empirical investigation[J]. Information and Software Technology, 1990, 32(2):106-114. [3] ZHENG J. Cost-sensitive boosting neural networks for software defect prediction[J]. Expert Systems with Applications, 2010, 37(6):4537-4543. [4] KHOSHGOFTAAR T M, SELIYA N. Analogy-based practical classification rules for software quality estimation[J].Empirical Software Engineering, 2003, 8(4):325-350. [5] CHIDAMBER S R, KEMERER C F. A metrics suite for object oriented design[J]. IEEE Transactions on Software Engineering, 1994, 20(6):476-493. [6] KHOSHGOFTAAR T M, GAO K, NAPOLITANO A. An empirical study of feature ranking techniques for software quality prediction[J].International Journal of Software Engineering and Knowledge Engineering, 2012, 22(2):161-183. [7] GAO K, KHOSHGOFTAAR T M, WANG H, et al. Choosing software metrics for defect prediction: an investigation on feature selection techniques[J]. Software: Practice and Experience, 2011, 41(5): 579-606. [8] KHOSHGOFTAAR T M, GAO K, NAPOLITANO A, et al. A comparative study of iterative and non-iterative feature selection techniques for software defect prediction[J]. Information Systems Frontiers, 2014, 16(5): 801-822. [9] BOEHM B W, PAPCCIO P N. Understanding and controlling software costs[J].IEEE Transactions on Software Engineering, 1998, 14(10):1462-1477. [10] 姚旭,王晓丹,张玉玺.特征选择综述[J].控制与决策,2012,27(2):161-166. YAO Xu, WANG Xiaodan, ZHANG Yuxi. Survey of feature selection methods[J]. Control and Decision, 2012, 27(2):161-166. [11] GU Q, LI Z, HAN J. Generalized fisher score for feature selection[C] // Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011.Barcelona, Spain:AUAI Press, 2011:266-273. [12] ROBNIK-SIKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1-2):23-69. [13] GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1-3):389-422. [14] LIU H, YU L. Toward integrating feature selection algorithms for classification and clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4):491-502. [15] WOZNICA A, NGUYEN P, KALOUSIS A. Model mining for robust feature selection[C] //Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China:ACM, 2012: 913-921. [16] JONG K, MARCHIORI E, SEBAG M, et al. Feature selection in proteomic pattern data with support vector machines[C] //Proceedings of the 2004 Symposium on Computational Intelligence in Bioinformatics and Computational Biology. La Jolla, USA:IEEE, 2004:41-48. [17] RODRIGUEZ D, RUIZ R, CUADRADO-GALLEGO J, et al. Detecting fault modules applying feature selection to classifiers[C] //Proceedings of the 2007 IEEE International Conference on Information Reuse and Integration.Las Vegas, USA:IEEE, 2007: 667-672. [18] FORMAN G. An extensive empirical study of feature selection metrics for text classification[J]. Journal of Machine Learning Research, 2003, 3(2):1289-1305. [19] QIAN C, YU Y, ZHOU Z H. Subset Selection by Pareto Optimization[C] //Proceedings of the Advances in Neural Information Processing Systems 28(NIPS 2015).Montreal, Canada:NIPS, 2015:1774-1782. [20] 徐燕, 李锦涛, 王斌,等. 基于区分类别能力的高性能特征选择方法[J]. 软件学报, 2008, 19(1):82-89. XU Yan, LI Jintao, WANG Bin, et al. A high performance feature selection method based on classification[J].Journal of Software, 2008, 19(1):82-89. [21] 马衍庆. 基于机器学习的网络流量识别方法与实现[D]. 济南:山东大学, 2014. MA Yanqing. Internet traffic classification and identification based on machine learning[D]. Jinan: Shandong University, 2014. [22] YU Y, YAO X, ZHOU ZH. On the approximation ability of evolutionary optimization with application to minimum set cover[J].Artificial Intelligence, 2012, 180-181(2):20-33. [23] HUANG Y J, POWERS R, MONTELIONE G T. Protein NMR recall, precision, and F-measure scores(RPF scores): structure quality assessment measures based on information retrieval statistics[J]. Journal of the American Chemical Society, 2005, 127(6): 1665-1674. [24] ZHAO Z, GUO S, XU Q, et al. G-means: a clustering algorithm for intrusion detection[C] //Proceedings of the Lecture Notes in Computer Science(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). [S.l.] :Springer, 2009, 5506:563-570. [25] WANG S, YAO X. Using class imbalance learning for software defect prediction[J]. IEEE Transactions on Reliability, 2013, 62(2):434-443. [26] METZ C E. Basic principles of ROC analysis[J].Seminars in Nuclear Medicine, 1978, 8(4):283-298. [27] KUBAT M, MATWIN S. Addressing the curse of imbalanced training sets: one-sided selection[C] //Proceedings of the Fourteenth International Conference on Machine Learning.Stanford, USA:ICML, 2000:179-186. |
[1] | MOU Lianming. Weighted k sub-convex-hull classifier based on adaptive feature selection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 32-37. |
[2] | LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42. |
[3] | MO Xiaoyong, PAN Zhisong, QIU Junyang, YU Yajun, JIANG Mingchu. Anomaly detection in network traffic based on online feature selection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 21-27. |
[4] | WEI Xiaomin, XU Bin, GUAN Jihong. Prediction of protein energy hot spots based on recursion feature elimination [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 12-20. |
[5] | PAN Dong-yin, ZHU Fa, XU Sheng, YE Ning*. Feature selection of gene expression profiles of colon cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 23-29. |
[6] | LI Guo-he1,2, YUE Xiang1,2, LI Xue3, WU Wei-jiang1,2, LI Hong-qi1. A method of feature selection for continuous attributes [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 1-6. |
[7] | LI Xia1, WANG Lian-xi2, JIANG Sheng-yi1. Ensemble learning based feature selection for imbalanced problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 7-11. |
[8] | DAI Ping, LI Ning*. A fast SVM-based feature selection method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 60-65. |
[9] | TAN Tai-zhe, LIANG Ying-yi, LIU Fu-chun. Application of ReliefF feature evaluation in un-supervised manifold learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 66-71. |
[10] | YOU Ming-yu, CHEN Yan, LI Guo-zheng. Im-IG: A novel feature selection method for imbalanced problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 123-128. |
[11] | YANG Ai-min1, ZHOU Yong-mei1, DENG He2, ZHOU Jian-feng3. Method of feature generation and selection for network traffic classification [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 1-7. |
[12] | WANG Fa-bo, XU Xin-shun. A new feature selection method for text categorization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(4): 8-11. |
|