JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (6): 97-104.doi: 10.6040/j.issn.1672-3961.0.2015.206

Previous Articles     Next Articles

SHPB experimental study of mortar simulating fractured rock under static and dynamic load combination

ZHANG Wei, LI Haitao, WANG Jian, WANG Li   

  1. School of Civil Engineering, Shangqiu Institute of Technology, Shangqiu 476000, Henan, China
  • Received:2015-07-01 Online:2016-12-20 Published:2015-07-01

Abstract: In order to study the dynamic response of fractured rock under the conditions of different cracks and confining pressures, precast fractured mortar specimens were employed to simulate the actual fractured rock. In the mold precast plastic sheet were installed to simulate the actual rock fissure angle and the penetration rate, and the confining pressure was simplified to normal metal ring fixture. Based on the orthogonal experiments, the dynamic response on mortar specimens under different confining pressures in different angle of tilt(0°, 30°, 45°, 60°, 90°)and different penetration rates(100%, 75%, 50%, 25%, 0%)was studied by SHPB test device. The results showed that when the angle was less than 45°, the specimen stability increased with reduced angle of fracture, when the angle exceeded 45°, the stability increased with increased angle of fracture, 45° angle of tilt was the critical point of the stability; stability had non-linear relationship with the inclination; the increasing of the penetration rate significantly reduced dynamics strength of specimens; confining pressure made mortar specimens produce a pseudo-plastic deformation, which could effectively improve the dynamic stability especially for high penetration rate of the specimen. The results provided a reference for the analysis of the underground engineering of fractured rock mass.

Key words: penetration rate, fractured rock, combined dynamic and static loading, angle of tilt, confining pressure, mortar

CLC Number: 

  • TU45
[1] 李宁, 张平, 陈蕴生. 裂隙岩体试验研究进展与思考[C] //中国岩石力学与工程学会第七次学术大会论文集. 北京:中国科学技术出版社, 2002:63-69.
[2] 赵德安, 陈志敏, 蔡小林, 等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6):1265-1271. ZHAO De'an, CHEN Zhimin, CAI Xiaolin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6):1265-1271.
[3] 贾超, 张国荣. 基于强度折减法随机裂隙岩体结构稳定性分析[J]. 山东大学学报(工学版), 2013, 43(6): 57-64. JIA Chao, ZHANG Guorong. Stability analysis of random fractured rock mass structure based on the strength reduction method[J].Journal of Shandong University(Engineering Science), 2013, 43(6): 57-64.
[4] 邱道宏, 薛诩国, 苏茂鑫, 等. 基于粗集功效系数法的青岛地铁围岩稳定性研究[J]. 山东大学学报(工学版), 2011, 41(5): 92-96. QIU Daohong, XUE Xuguo, SU Maoxin, et al. Study on surrounding rock stability based on the efficacy coefficient method and rough set[J]. Journal of Shandong University(Engineering Science), 2011, 41(5): 92-96.
[5] 宋选民, 顾铁凤, 柳崇伟. 受贯通裂隙控制岩体巷道稳定性试验研究[J]. 岩石力学与工程学报, 2002, 21(12): 1781-1785. SONG Xuanmin, GU Tiefeng, LIU Chongwei. Experimental study on roadway stability in rock mass with connected fissures[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1781-1785.
[6] 张海波, 王媛, 王鲁明, 等. 裂隙岩体动力特性的试验模拟研究[J]. 河海大学学报(自然科学版), 2007, 35(3): 309-311. ZHANG Haibo, WANG Yuan, WANG Luming, et al. Experimental research on dynamic characteristics of fractured rock mass[J]. Journal of Hohai University(Natural Sciences), 2007, 35(3): 309-311.
[7] 张伟, 周国庆, 张海波, 等. 倾角对裂隙岩体力学特性影响试验模拟研究[J]. 中国矿业大学学报, 2009, 38(1): 30-33. ZHANG Wei, ZHOU Guoqing, ZHANG Haibo, et al. Experimental research on the influence of obliquity on the mechanical characteristics of a fractured rock mass[J]. Journal of China University of Mining and Technology, 2009, 38(1): 30-33.
[8] 王明洋,钱七虎. 爆炸应力波通过节理裂隙带的衰减规律[J]. 岩土工程学报, 1995, 17(2): 25-29. WANG Mingyang, Qian Qihu. The attenuation law of blast stress wave through joint fissure zone[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 25-29.
[9] 仝兴华, 韩建新, 李术才, 等. 随机分布贯穿裂隙岩体峰后应力-应变关系模型[J]. 中南大学学报(自然科学版), 2013, 44(4): 1620-1625. TONG Xinghua, HAN Jianxin, LI Shucai, et al. Model for post-peak stress-strain relationship of rock mass with stochastic distribution of penetrative cracks[J]. Journal of Central South University(Science and Technology), 2013, 44(4): 1620-1625.
[10] 黄达, 岑夺丰. 单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J]. 岩石力学与工程学报, 2013, 32(9): 1926-1936. HUANG Da, CEN Duofeng. Mechanical responses and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression using particle flow code simulations[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1926-1936.
[11] 李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, 27(7): 1387-1395. LI Xibing, ZHOU Zilong, YE Zhouyuan, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387-1395.
[12] 宫凤强, 李夕兵, 刘希灵. 一维动静组合加载下砂岩动力学特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(10): 2076-2085. GONG Fengqiang, LI Xibing, LIU Xiling. Experimental study of dynamic characteristics of sandstone under one-dimensional coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2076-2085.
[13] 冯明德, 彭艳菊, 刘永强. SHPB实验技术研究[J]. 地球物理学进展, 2006, 21(1): 73-78. FENG Mingde, PENG Yanju, LIU Yongqiang, et al. Study on SHPB technique[J]. Progress in Geophysics, 2006, 21(1): 73-78.
[14] 李铁英, 雷宏刚, 张善元, 等. 金属材料损伤描述及损伤演化[C] // 第十届全国结构工程学术会议论文集第Ⅰ卷.北京:《工程力学》杂志社,2001:298-302.
[15] 潘丽军, 陈锦权. 试验设计与数据处理[M]. 南京: 东南大学出版社, 2008.
[16] 王文, 朱维申, 马海萍, 等. 不同倾角节理组和锚固效应对岩体特性的影响[J]. 岩土力学, 2013, 34(3): 887-893. WANG Wen, ZHU Weishen, MA Haiping, et al. Influence of joints set with different dip angles and anchorage effect on rock mass behaviour[J]. Rock and Soil Mechanics, 2013, 34(3): 887-893.
[17] 湖南大学. 土木工程材料[M]. 北京: 中国建筑工业出版社, 2002.
[18] 陕西省建筑科学研究院. JGJ/T70—2009建筑砂浆基本性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2009.
[19] 吴昊, 郑靖. SHPB实验中应变片的应用和标定[J]. 舰船电子工程, 2010, 30(5): 172-174. WU Hao, ZHENG Jing. Stain gauge's application and demarcate in SHPB experiment[J]. Ship Electronic Engineering, 2010, 30(5): 172-174.
[20] 郑鹏飞. 混凝土材料低温动力学性能SHPB试验研究及损伤分析[D].徐州: 空军勤务学院, 2012. ZHENG Pengfei. Research on dynamic performance of concrete material in low temperature under SHPB device and analysis of damage[D].Xuzhou: Air Force Logistics University, 2012.
[21] 胡金生, 唐德高, 陈向欣, 等. 提高大直径SHPB装置试验精度的方法[J]. 解放军理工大学学报(自然科学版), 2003, 4(1): 71-74. HU Jinsheng, TANG Degao, CHEN Xiangxin, et al. Method of enhancing experimental precision for big radial size SHPB equipment[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2003, 4(1): 71-74.
[22] 孟益平, 胡时胜. 混凝土材料冲击压缩试验中的一些问题[J]. 实验力学, 2003, 18(1): 108-111. MENG Yiping, HU Shisheng. Some problems in the test of concrete under impact compressive loading[J]. Journal of Experimental Mechanics, 2003, 18(1): 108-111.
[23] 王鲁明, 赵坚, 华安增, 等. 脆性材料SHPB实验技术的研究[J]. 岩石力学与工程学报, 2003, 22(11): 1798-1802. WANG Luming, ZHAO Jian, HUA Anzeng, et al. Research on SHPB testing technique for brittle material[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1798-1802.
[24] 卢玉斌, 张松燕. 脆性材料SHPB试验中实现近似恒应变率加载必要性的研究[J]. 西南科技大学学报, 2012, 27(3): 47-51. LU Yubin, ZHANG Songyan. Study on the necessity of achieving nearly constant strain-rate loading in Split Hopkinson Pressure Bar tests for brittle materials[J]. Journal of Southwest University of Science and Technology, 2012, 27(3): 47-51.
[25] 陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究[J]. 爆炸与冲击, 2004, 24(5): 413-418. TAO Junlin, TIAN Changjin, CHEN yuze, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB[J]. Explosion and Shock Waves, 2004, 24(5):413-418.
[26] 韩晓健, 左熹, 陈国兴. 基于虚拟仪器技术的振动台模型试验98通道动态信号采集系统研制[J]. 防灾减灾工程学报, 2010, 30(5): 503-508. HAN Xiaojian, ZUO Xi, CHEN Guoxing. Development of 98 channels dynamic signal acquisition system for shaking table test based on virtual instrument technology[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(5): 503-508.
[1] WANG Haipeng, ZHANG Rong, ZHANG Xiaohua, MAO Cheng, ZHOU Shuiwen. Dynamic shear creep characteristics of asphalt mortar [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 68-75.
[2] BU Liangtao, YUAN Haitao. Experimental research on two-sided shearing bonding property of fiber cement mortar to concrete [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 76-82.
[3] ZHANG Hongbo, XIE Quanyi, YUE Hongya, MENG Qingyu. Study on performance of electromagnetic shielding mortar mixed with copper coated fabric fiber [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 56-61.
[4] FU Chang, JIANG Mingjing, SHEN Zhifu, WANG Huaning, WU Xiaofeng. Experiments on influence factors of dynamic shear modulus and damping ratio of unsaturated soil [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 35-41.
[5] GE Zhi1, MENG Fanbo2, YUE Hongya1, HU Yizhang1. Durability study of PET-brick powder mortar [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 76-79.
[6] JIA Chao, ZHANG Guo-rong. Stability analysis of random fractured rock mass structure based onthe strength reduction method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 57-64.
[7] YAO Zhan-yong, HAN Jie*, SHANG Qing-sen, GE Zhi, ZHANG Xiao-meng, CUI Heng. Research on pressure sensitivity of the conductive asphalt mortar  with carbon fiber and graphite powders [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 80-85.
[8] GE Zhi1, WANG Hao2, ZHANG Kun1, LI Peng-cheng1. Investigation on the properties of plastic mortar [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 106-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[2] YUE Yuan-Zheng. Relaxation in glasses far from equilibrium[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 1 -20 .
[3] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[4] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[5] LI Hui-ping, ZHAO Guo-qun, ZHANG Lei, HE Lian-fang. The development status of hot stamping and quenching of ultra high-strength steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 69 -74 .
[6] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[8] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[10] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .