JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (5): 110-115.doi: 10.6040/j.issn.1672-3961.0.2015.382

Previous Articles     Next Articles

Study on the circulating Pushover on ductile ability of pillar piers caused by axial compression ratio

ZHU Jun, ZHAO Jianfeng*, CHEN Zhijian   

  1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
  • Received:2015-11-20 Online:2016-10-20 Published:2015-11-20

Abstract: Nonlinear FE models of cylindrical bridge piers were established using ABAQUS. Failure process of cylindrical bridge piers including protective layer, core area concrete, stirrups and longitudinal reinforcement were simulated using Pushover analysis with cycle loading. The effects of axial compression ratio on ductility failure of cylindrical bridge piers were studied. Numerical results showed that the failure time of core area concrete was shortened with increasing of axial compression ratio. While first yield time of protective layer and core area concrete, stirrups and longitudinal reinforcement had no significant impact rules to follow. Within certain range, displacement ductility coefficient decreased with increasing of axial compression ratio, which showed that proper axial compression ratio would improve ductility seismic ability of bridge piers. Results also showed that cylindrical piers hysteretic energy capacity increased with the axial compression ratio decreases.

Key words: Pushover analysis with cycle loading, ductile, cylindrical piers, axial compression ratio, yield load

CLC Number: 

  • U441
[1] 秦泗凤. 桥梁抗震性能评价的静力非线性分析方法研究[D].大连:大连理工大学,2008. QIN Sifeng. Static nonlinear analysis methods for estimating seismic performance for bridges[D]. Dalian:Dalian University of Technology, 2008.
[2] 吕国栋. 基于Pushover分析的城市高架桥梁抗震性能评估[D]. 兰州:兰州交通大学,2012. L(¨overU)Guodong. Seismic assessment of urban elevated bridges based on pushover analysis[D]. Lanzhou:Lanzhou Jiaotong University, 2012.
[3] 孙鹏,罗韧,李鸿晶,等. 地震作用下混凝土梁桥连续倒塌过程分析[J]. 空间结构,2015,21(1):78-84. SUN Peng, LUO Ren, LI Hongjing, et al. Progressive collapse analysis of concrete girder bridges subjected to earthquake-induced ground motion[J].Spatial Structures, 2015, 21(1):78-84.
[4] 赵岩. 桥梁抗震的线性/非线性分析方法研究[D]. 大连:大连理工大学,2003. ZHAO Yan. On linear/nonlinear seismic analysis mothods of bridges[D]. Dalian:Dalian University of Technology, 2003.
[5] 莎玛.基于试验的矩形空心墩抗震性能研究[D].西安:长安大学,2011. SHEIMAA I M. Experimental study on seismic behavior of rectangular hollow pier[D]. Xi'an:Chang'an University, 2011.
[6] SHAKERI K, TARBALI K, MOHEBBI M. Pushover analysis of asymmetric-plan buildings based on distribution of the combined modal story shear and torsional moment[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(4): 707-716.
[7] 盛光祖. Pushover分析方法的发展及其在桥梁结构中的应用[J]. 华北地震科学,2008,26(4):25-30. SHENG Guangzu. Development of pushover analysis and its application to bridges[J].North China Earthquake Science, 2008, 26(4):25-30.
[8] 汪大绥,贺军利,张凤新. 静力弹塑性分析(Pushover Analysis)的基本原理和计算实例[J]. 世界地震工程,2004,20(1):45-53. WANG Dasui, HE Junli, ZHANG Fengxin.The basic principle and a case study of the static elastoplastic analysis(Pushover Analysis)[J].World Earthquake Engineering, 2004, 20(1):45-53.
[9] 盛光祖,李建中,陈亮.桥梁单墩不同侧向力分布模式Pushover分析方法[J]. 振动与冲击,2010,29(2):170-174. SHENG Guangzu, LI Jianzhong, CHEN Liang.Pushover analysis of different distribute lateral load patterns for seismic assment of bridge piers[J].Journal of Vibration and Shock, 2010, 29(2):170-174.
[10] 叶献国,种迅,李康宁,等. Pushover方法与循环往复加载分析的研究[J]. 合肥工业大学学报(自然科学版),2001,24(6):1019-1024. YE Xianguo, ZHONG Xun, LI Kangning, et al. Study on Pushover analysis procedure and reversal load pattern[J].Journal of Hefei University of Technology(Natural Science), 2001, 24(6):1019-1024.
[11] 侯爱波,汪梦甫. 循环往复加载的Pushover分析方法及其应用[J]. 湖南大学学报(自然科学版),2003,30(3):145-147. HOU Aibo, WANG Mengfu.The analysis method and application of circulating Pushover[J].Journal of Hunan University(Natural Science), 2003, 30(3):145-147.
[12] 谢海清,杨国静,何庭国. 铁路矩形空心桥墩延性抗震设计简化计算方法[J]. 世界地震工程,2010,26(1):147-152. XIE Haiqing, YANG Guojing, HE Tingguo. Simplified method for ductile seismic design of railway rectangular hollow piers[J]. World Earthquake Engineering, 2010, 26(1):147-152.
[13] 任士朴. FRP约束钢筋混凝土桥墩抗震性能研究[D]. 西安:长安大学,2014. REN Shipu.The study of the seismic performance of the FRP confined concrete bridge columns[D]. Xi'an: Chang'an University, 2014.
[14] 齐虎,李云贵,吕西林. 箍筋约束混凝土单轴滞回本构实用模型[J]. 工程力学, 2011,28(9):95-102. QI Hu, LI Yungui, LYU Xilin. A practical confined concrete constitutive model under uniaxial hysteresis load[J]. Engineering Mechanics, 2011, 28(9):95-102.
[15] 艾庆华. 钢筋混凝土桥墩抗震性态数值评价与试验研究[D].大连:大连理工大学,2008. AI Qinghua.Numerical evaluation and experimental study of seismic performance for reinforced concrete bridge piers[D].Dalian:Dalian University of Technology, 2008.
[16] 王强,朱丽丽,李哲,等. ABAQUS显式分析梁单元的混凝土、钢筋本构模型[J].沈阳建筑大学学报(自然科学版),2013,29(1):56-64. WANG Qiang, ZHU Lili, LI Zhe, et al.Study on the constitutive model of concrete and steel for explicit dynamic beam elements of ABAQUS[J].Journal of Shenyang Jianzhu University(Natural Science), 2013, 29(1):56-64.
[17] 董浩然. FRP约束钢筋混凝土桥墩抗震性能分析[D].大连:大连理工大学,2015. DONG Haoran.Analytical seismic performance of FRP confined RC bridge pier[D]. Dalian:Dalian University of Technology, 2015.
[18] 杜修力,陈明琦,韩强. 钢筋混凝土空心桥墩抗震性能试验研究[J]. 振动与冲击,2011,30(11):254-259. DU Xiuli, CHEN Mingqi, HAN Qiang. Experimental evaluation of seismic performance of reinforced concrete hollow bridge columns[J]. Journal of Vibration and Shock, 2011, 30(11):254-259.
[19] 叶列平.高强砼框架柱抗震性能的试验研究[J].建筑结构学报, 1992, 13(4):41-48. YE Lieping. Experimental research on earthquake resistance behavior of high-strength concrete frame columns[J].Journal of Architectural Structure, 1992, 13(4):41-48.
[1] ZHANG Wanzhi, LIU Hua, ZHANG Feng, GAO Lei, YAO Chen, LIU Guanzhi. Mechanical properties of tower and beam synchronous construction of cable-stayed bridge [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 120-126.
[2] HUANG Zeng-yan,WANG Guang-yue,LI Qian,ZHAO Ming . Rank evaluation of sand liquefaction based on Extenics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 31-35 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[2] YUE Yuan-Zheng. Relaxation in glasses far from equilibrium[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 1 -20 .
[3] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[4] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[5] MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 28 -34 .
[6] HANG Guang-qing,KONG Fan-yu,LI Da-xing, . Efficient algorithm with resistance to simple power analysis on Koblitz curves[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 78 -80 .
[7] XU Yan-sheng,LIU Xing-fang . Application of the fuzzy clustering iterative model to the evalution of water resource carrying capacity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 100 -104 .
[8] LI Shan-ping,HU Zhen,SUN Yi-ming*,ZHEN Bo-ru,ZHANG Qi-lei,CAO Han-lin . Preparation and evaluation of the electro-catalytic characteristics of novel lead Ti-based dioxide electrodes[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 109 -113 .
[9] LI Xin-Ping, DAI Yi-Fei, HU Jing. Fluid-solid coupling analysis of surrounding rock mass stability and water inflow forecast of a tunnel in a karst zone[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 1 -6 .
[10] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .