Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (6): 76-82.doi: 10.6040/j.issn.1672-3961.0.2024.333

• 能动工程——热管理专题 • Previous Articles    

Optimisation of finned tube structure based on BP neural network and genetic algorithm

SHAO Mengwei1, YUAN Shifei2, ZHOU Hongzhi2, WANG Naihua2*   

  1. SHAO Mengwei1, YUAN Shifei2, ZHOU Hongzhi2, WANG Naihua2*(1. Shandong Shuilongwang Scicence and Technology Co., Ltd., Jinan 250301, Shandong, China;
    2. Institute of Thermal Science and Technology, Shandong University, Jinan 250061, Shandong, China
  • Published:2025-12-22

Abstract: To enhance the comprehensive performance of the heat pipe heat exchanger, the finned tube structure in a thermosyphon evaporator for nuclear power plant passive cooling systems was optimized using the hybrid back propagation(BP)neural network prediction model and non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ). Six structural parameters, such as fin thickness, spacing, height, transverse tube pitch, longitudinal tube pitch, and aspect ratio, were selected as design variables. Predictive models for the Nusselt number, pressure drop, and minimum cross-sectional airflow velocity were developed, enabling multi-objective optimization targeting maximum heat transfer and minimum flow resistance. The optimal configuration(1 mm fin thickness, 6 mm spacing, 5 mm height, 70 mm transverse tube pitch, 75 mm longitudinal tube pitch, 1.4 aspect ratio)resulted in a 25.86% increase in the heat factor, a 17.96% reduction in the flow resistance, and a 35.24% improvement in the overall performance coefficient. These results validated the effectiveness of the combined BP neural network and genetic algorithm for heat pipe design, providing both critical parameters and theoretical guidance for engineering optimization of nuclear power plant passive cooling systems.

Key words: BP neural network, non-dominated sorting genetic algorithm, passive cooling system, thermosyphon, multi-objective optimization

CLC Number: 

  • TK172
[1] WOUTERS P, DUCARME D, DEMEESTER J, et al. Ventilation requirements in non-domestic buildings and energy efficiency[J]. Energy and Buildings, 1998, 27(3): 257-261.
[2] SUTHARSHAN B, MUTYALA M, VIJUK R P, et al. The AP1000TM reactor: passive safety and modular design[J]. Energy Procedia, 2011, 7: 293-302.
[3] LEED S, LIU M L, HUNG T C, et al. Optimal structural analysis with associated passive heat removal for AP1000 shield building[J]. Applied Thermal Engineering, 2013, 50(1): 207-216.
[4] WU X Y, HUANG Y X, YE W, et al. Optimization analysis of passive fin-concrete heat sinks for thermal environment control in main control room[J]. Case Studies in Thermal Engineering, 2022, 35: 102108.
[5] HUANG Y X, WU X Y, YE W, et al. Dynamic performance and multi-objective optimization of fin-concrete heat sinks[J]. Applied Thermal Engineering, 2021, 195: 117146.
[6] HUANG Y X, SU X, WU X Y, et al. Dynamic thermal performance analysis for fin-concrete ceiling in main control rooms of passive nuclear power plants[J]. Case Studies in Thermal Engineering, 2021, 28: 101402.
[7] CHANG L, ZHANG X, CAI Y Y. Cold concrete envelopes with fins regulating control rooms temperature under accident conditions[J]. Procedia Engineering, 2017, 205: 3493-3496.
[8] 赵剑刚. 非能动冰蓄冷技术在核电站主控室可居留性应用分析[J]. 广东化工, 2014, 41(15): 58-59. ZHAO Jiangang. Application analysis of passive ice-storage technology in main control room habitability[J]. Guangdong Chemical Industry, 2014, 41(15): 58-59.
[9] 赵丹, 林宇清, 吕胡人. 基于相变蓄冷的核电厂主控室非能动冷却系统[J]. 暖通空调, 2024, 54(1): 1-4. ZHAO Dan, LIN Yuqing, LÜ Huren. Passive cooling system of main control room in nuclear power plants based on phase change cold storage[J]. Heating Ventilating & Air Conditioning, 2024, 54(1): 1-4.
[10] 李进. 核电站主控室在断电事故中利用高压空气非能动制冷研究[D]. 重庆: 重庆大学, 2015: 88-96. LI Jin. Study on the passive refrigeration with high-pressure air for main control room of nuclear power plant in blackout accident[D]. Chongqing: Chongqing Univer-sity, 2015: 88-96.
[11] LI H, LI K N, LIU B, et al. Study on the passive refrigeration for main control room of nuclear power plant in power outage accident[J]. Nuclear Engineering and Design, 2018, 326: 183-189.
[12] WANG S L, CHEN G M, FANG M, et al. A new compressed air energy storage refrigeration system[J]. Energy Conversion and Management, 2006, 47(18/19): 3408-3416.
[13] PARKS K, AHN J H, KIM T S. Off-design operating characteristics of an open-cycle air refrigeration system[J]. International Journal of Refrigeration, 2012, 35(8): 2311-2320.
[14] 周照春. 核电站主控室热管换热非能动通风系统研究[D]. 北京: 北京化工大学, 2022: 33-42. ZHOU Zhaochun. Research on passive ventilation a system using heat pipe for thermal exchange in main control room of nuclear power plant[D]. Beijing: Beijing University of Chemical Technology, 2022: 33-42.
[15] WU X P, JOHNSON P, AKBARZADEH A. Application of heat pipe heat exchangers to humidity control in air-conditioning systems[J]. Applied Thermal Engineering, 1997, 17(6): 561-568.
[16] CHERNYSHEVA M A, YUSHAKOVA S I, MAYDANIK Y F. Copper-water loop heat pipes for energy-efficient cooling systems of supercomputers[J]. Energy, 2014, 69: 534-542.
[17] ZHANG G H, WANG B L, LI X T, et al. Review of experimentation and modeling of heat and mass transfer performance of fin-and-tube heat exchangers with dehumidification[J]. Applied Thermal Engineering, 2019, 146: 701-717.
[18] 王玲, 李俐, 朱翔鸥, 等. 基于粒子群算法的强迫风冷散热器多目标优化[J]. 电气技术, 2022, 23(2): 20-25. WANG Ling, LI Li, ZHU Xiang'ou, et al. Multi-objective optimization of forced air-cooled radiators based on particle swarm algorithm[J]. Electrical Technology, 2022, 23(2): 20-25.
[19] 龙浪. 螺旋翅片管式换热器散热仿真分析及结构优化设计[D]. 成都: 电子科技大学, 2023. LONG Lang. Thermal simulation analysis and structural optimization design of spiral finned tube heat exchangers[D]. Chengdu: University of Electronic Science and Technology, 2023.
[20] WANG S M, XIAO J, WANG J R, et al. Application of response surface method and multi-objective genetic algorithm to configuration optimization of shell-and-tube heat exchanger with fold helical baffles[J]. Applied Thermal Engineering, 2018, 129: 512-520.
[21] ZHANG T Y, CHEN L, WANG J. Multi-objective optimization of elliptical tube fin heat exchangers based on neural networks and genetic algorithm[J]. Energy, 2023, 269: 126729.
[22] KAYS W M, LONDON A L, ECKERT E R G. Compact heat exchangers[J]. Journal of Applied Mechanics, 1960, 27(2): 377.
[1] Haoyuan LI,Jingming YU,Guilin ZHANG,Bin ZHANG. Optimization of manufacturing parameters for optical fiber preform core based on intelligent algorithm [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 149-156.
[2] DING Fei, JIANG Mingyan. Housing price prediction based on improved lion swarm algorithm and BP neural network model [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 8-16.
[3] SUN Donglei, WANG Yan, YU Yixiao, HAN Xueshan, YANG Ming, YAN Fangqing. Interval prediction of short-term regional photovoltaic power based on BP neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 70-76.
[4] Baoming JIN,Guangyi LU,Wei WANG,Lunyue DU. Research on BP neural network rainfall runoff forecasting model based on elastic gradient descent algorithm [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 117-124.
[5] Dong YANG,Shiwen WANG,Yong WANG,Bo CHEN,Tianru ZHENG,Ning ZHOU,Tian XIAO,Yawen ZHAO. Optimal complementary photovoltaic capacity configuration for grid-connected wind farms expansion [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 44-51.
[6] Diankun ZHENG,Tongle XU,Zhaojie YIN,Qingmin MENG. Prediction method of tailing dam groundwater levels based on improved PSO-BP neural network [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 108-113.
[7] DENG Guanlong, YANG Hongyong, ZHANG Shuning, GU Xingsheng. Multi-objective scheduling in no-wait flow shop using a hybridized differential evolution algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 21-28.
[8] LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83.
[9] LIU Chun-an. A dynamic multi-objective optimization evolutionary algorithm based on estimation of core distribution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 167-172.
[10] QU Yan-peng, CHEN Song-ying, YANG Xin-zhen, XIE Fu-chao, LI Wen-feng, SONG Xiu-qin. Multi-objective optimization for the geometrical parameters of the low-specific-speed centrifugal impeller [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 103-105.
[11] YAO Fu-an,PANG Xiang-kun,JIAO Ying-ying,WANG Zhong-lin,ZHANG Xi-man . Temperature detection of a rotary kiln based on three-color measurement and the BP neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 61-65 .
[12] GAO Xiao-wei,JIANG Xiao-yun . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 107-110 .
[13] ZHAO Yijun . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 81-83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!