Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (5): 44-51.doi: 10.6040/j.issn.1672-3961.0.2019.162

• Engineering—Special Topic on Artificial Intelligence Application • Previous Articles     Next Articles

Optimal complementary photovoltaic capacity configuration for grid-connected wind farms expansion

Dong YANG1(),Shiwen WANG2,Yong WANG3,Bo CHEN1,Tianru ZHENG1,Ning ZHOU1,Tian XIAO4,*(),Yawen ZHAO4   

  1. 1. State Grid Shandong Electric Power Research Institute, Jinan 250003, Shandong, China
    2. Weihai Power Supply Company, State Grid Shandong Electric Power Company, Weihai 264200, Shandong, China
    3. State Grid Shandong Electric Power Company, Jinan 250001, Shandong, China
    4. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), Jinan 250061, Shandong, China
  • Received:2019-04-15 Online:2019-10-20 Published:2019-10-18
  • Contact: Tian XIAO E-mail:yangdong_epri@163.com;xt.icey@qq.com
  • Supported by:
    国网山东省电力公司科技项目(2018A-101)

Abstract:

According to the complementarity of wind and solar energy sources, expanding photovoltaic panels in wind farms into wind-PV hybrid generation systems was helpful to smooth power fluctuation and improve operation economy. An approach to solve the optimization of the PV capacity for grid-connected wind farm was presented. Based on the complementarity of wind speed and solar radiation in time scales, modified meteorological probability models were established. A multi-objective optimization model was proposed with three objectives: maximizing the utilization of electrical equipment, minimizing the power fluctuation and the loss of renewable energy. The contradiction of three objectives and influence of the step-up transformer were incorporated. Meteorological data were simulated based on the Monte Carlo method. And the multi-objective particle swarm optimization was used to search the Pareto optimal solution set, from which an ultimate planning scheme was selected considering the engineering requirements and economic index. A numerical example was provided to validate the effectiveness of proposed approach.

Key words: wind-PV hybrid, multi-objective optimization, capacity configuration, probability model

CLC Number: 

  • TM61

Fig.1

Schematic diagram of a wind-PV hybrid system"

Fig.2

Flow chart of MOPSO"

Table 1

Parameters of WTG"

风机型号 轮毂高度/m 额定功率/kW 切入风速/(m·s-1) 额定风速/(m·s-1) 切出风速/(m·s-1)
Gamesa G58-850 65 850 3.0 13.5 25.0

Fig.3

Meteorological data curves of study area"

Table 2

Comparison between the modified and traditionalmeteorological model"

气象模型 风速跟踪率rw/% 风光互补模式跟踪率rp/%
改进气象模型 58.61 73.61
传统气象模型 49.44 48.89

Fig.4

The Pareto front when Pt=50 MVA of scenario 1"

Fig.5

Pareto front when Pt=100 MVA of scenario 2"

Table 3

The candidate solutions"

方案编号 光伏安装面积/hm2 是否扩展升压主变 输出功率变异系数Cv/% 升压主变利用率Ru/% 清洁能源浪费率Rl/% 经济性指标kb/%
S1 38.25 79.73 37.47 2.31 83.12
S2 36.42 79.81 36.80 2.12 85.17
S3 37.05 79.77 37.04 2.18 84.44
S4 37.94 79.74 37.36 2.28 83.45
S5 34.47 79.85 36.08 1.93 87.59

Table 4

Comparison of indexes of different generation systems"

系统类型 风电装机容量/MW 风力发电机台数/台 光伏装机容量/MW 光伏安装面积/hm2 光伏电池数量/片 总装机容量/MW 年输出电量/(kWh) 输出功率变异系数Cv/% 升压主变利用率Ru/% 清洁能源浪费率Rl/% 年售电收益/万元
风光互补发电系统 49.30 58 53.70 34.47 210 577 103.0 158 026 043 79.95 36.08 1.93 118.650
风电场 103.7 122 0 0 0 103.7 174 648 611 87.91 39.87 15.64 104.789

Fig.6

Pareto fronts comparison of the proposed method withthe NSGA-Ⅱ in scenario 1"

Fig.7

Pareto fronts comparison of the proposed methodwith the NSGA-Ⅱ in scenario 2"

1 王飞, 宋士瞻, 曹永吉, 等. 基于连续小波变换的风光发电资源多尺度评估[J]. 山东大学学报(工学版), 2018, 48 (5): 124- 130.
WANG Fei , SONG Shizhan , CAO Yongji , et al. Multi-scale assessment of wind-solar generation resources based on continuous wavelet transform[J]. Journal of Shandong University (Engineering Science), 2018, 48 (5): 124- 130.
2 KATSIGIANNIS Y A , GEORGILAKIS P S , KARAPIDAKIS E S . Hybrid simulated annealing-tabu search method for optimal sizing of autonomous power systems with renewables[J]. IEEE Transactions on Sustainable Energy, 2012, 3 (3): 330- 338.
3 ZHANG H X , CAO Y J , ZHANG Y , et al. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data[J]. Applied Energy, 2018, 216, 172- 182.
doi: 10.1016/j.apenergy.2018.02.094
4 CHENG L , LIU M , SUN Y , et al. A multi-state model for wind farms considering operational outage probability[J]. Journal of Modern Power Systems and Clean Energy, 2013, 1 (2): 177- 185.
5 LIU C , CHAU K T , ZHANG X . An efficient wind-photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine[J]. IEEE Transactions on Industrial Electronics, 2010, 57 (3): 831- 839.
doi: 10.1109/TIE.2009.2022511
6 AL-MASRI H M , EHSANI M . Feasibility investigation of a hybrid on-grid wind photovoltaic retrofitting system[J]. IEEE Transactions on Industry Applications, 2016, 52 (3): 1979- 1988.
doi: 10.1109/TIA.2015.2513385
7 XU L , RUAN X , MAO C , et al. An Improved optimal sizing method for wind-solar-battery hybrid power system[J]. IEEE Transactions on Sustainable Energy, 2013, 4 (3): 774- 785.
doi: 10.1109/TSTE.2012.2228509
8 HONG Y Y , LIAN R C . Optimal sizing of hybrid Wind/PV/Diesel Generation in a Stand-Alone Power System Using Markov-Based Genetic Algorithm[J]. IEEE Transactions on Power Delivery, 2012, 27 (2): 640- 647.
doi: 10.1109/TPWRD.2011.2177102
9 BANSAL A K , KUMAR R , GUPTA R A . Economic analysis and power management of a small autonomous hybrid power system (SAHPS) using biogeography based optimization (BBO) algorithm[J]. IEEE Transactions on Smart Grid, 2013, 4 (1): 638- 648.
10 KATSIGIANNIS Y A , GEORGILAKIS P S , KARAPIDAKIS E S . Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables[J]. IET Renewable Power Generation, 2010, 4 (5): 404- 419.
doi: 10.1049/iet-rpg.2009.0076
11 YUAN Y , CAO Y , ZHANG X , et al. Optimal proportion of wind and PV capacity in provincial power systems based on bilevel optimization algorithm under low-carbon economy[J]. Journal of Modern Power Systems and Clean Energy, 2015, 3 (1): 33- 40.
12 ABBES D , MARTINEZ A , CHAMPENOIS G . Eco-design optimisation of an autonomous hybrid wind-photovoltaic system with battery storage[J]. IET Renewable Power Generation, 2012, 6 (5): 358- 371.
doi: 10.1049/iet-rpg.2011.0204
13 ZHU Y, JIANG P, YANG S. An optimal capacity allocation scheme for the wind-PV hybrid power system based on probabilistic production simulation[C]//Energy Conversion (CENCON), 2014 IEEE Conference on. Johor Bahru, Malaysia: IEEE, 2014: 277-282.
14 叶承晋, 黄民翔, 王焱, 等. 基于离散概率模型的风光互补供电系统优化配置[J]. 电力系统自动化, 2013, (6): 48- 54.
YE Chengjin , HUANG Minxiang , WANG Yan , et al. A hybrid wind/photovoltaic power supply system based on discrete probabilistic methodology[J]. Automation of Electric Power Systems, 2013, (6): 48- 54.
15 JANGAMSHETTI S H , RAN V G . Optimum siting of wind turbine generators[J]. IEEE Transactions on Energy Conversion, 2001, 16 (1): 8- 13.
16 ZOU K , AGALGAONKAR A P , MUTTAQI K M , et al. Distribution system planning with incorporating DG reactive capability and system uncertainties[J]. IEEE Transactions on Sustainable Energy, 2012, 3 (1): 112- 123.
doi: 10.1109/TSTE.2011.2166281
17 BOROWY B S , SALAMEH Z M . Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system[J]. IEEE Transactions on Energy Conversion, 1996, 11 (2): 367- 375.
18 WANG L , SINGH C . Multi-criteria Design of hybrid power generation systems based on a modified particle swarm optimization algorithm[J]. IEEE Transactions on Energy Conversion, 2009, 24 (1): 163- 172.
19 成驰, 许杨, 杨宏青. 并网风光互补资源评价与系统容量优化配置[J]. 水电能源科学, 2014, (6): 193- 196.
CHENG Chi , XU Yang , YANG Hongqing . Resources evaluation of grid hybrid wind/pv power complementary and optimization allocation of system capacity[J]. Water Resources and Power, 2014, (6): 193- 196.
20 HAZRA J , SINHA A K . Congestion management using multi-objective particle swarm optimization[J]. IEEE Transactions on Power Systems, 2007, 22 (4): 1726- 1734.
[1] PEI Xiaobing, CHEN Huifen, ZHANG Baizhan, CHEN Menghui. Improved bi-variables estimation of distribution algorithms for multi-objective permutation flow shop scheduling problem [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 25-30.
[2] DENG Guanlong, YANG Hongyong, ZHANG Shuning, GU Xingsheng. Multi-objective scheduling in no-wait flow shop using a hybridized differential evolution algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 21-28.
[3] LIU Chun-an. A dynamic multi-objective optimization evolutionary algorithm based on estimation of core distribution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 167-172.
[4] QU Yan-peng, CHEN Song-ying, YANG Xin-zhen, XIE Fu-chao, LI Wen-feng, SONG Xiu-qin. Multi-objective optimization for the geometrical parameters of the low-specific-speed centrifugal impeller [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 103-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Zhongguo,ZHANG Xiaojing,LIU Boqiang,LIU Changchun, . The development of ultrasonic characterization of the biological tissue elasticity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 34 -38 .
[2] QU Yan-peng,CHEN Song-ying,LI Chun-feng,WANG Xiao-peng,TENG Shu-ge . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 16 -20 .
[3] ZHANG Ai-juan. Synthesis of bone-like hydroxyapatite in simulated body fluid[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 86 -90 .
[4] HU Tian-liang,LI Peng,ZHANG Cheng-rui,ZUO Yi . Design of a QEP decode counter based on VHDL[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 10 -13 .
[5] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[6] DIAO Yong, TIAN Si-Meng, CAO Zhe-Meng. Geological work method for the construction of the Yichang Wanzhou Railway tunnel in high risk karst areas[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 91 -95 .
[7] GONG Yi-guang,GONG Yi-guang,BAI Jun-jie,WANG Ning-sheng . An DNC system based on SCA specification and its application[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 5 -8 .
[8] WANG Yan-qing,QIAN Cheng-shan,JIANG Chang-sheng . A delay-dependent robust stability criterion for uncertainneutral systems with time-varying delay[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 116 -120 .
[9] LI Ying,SONG Gang . Preprocessing algorithms for Chinese handwriting recognition[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(2): 80 -83 .
[10] ZHANG Cheng-hui,PEI Rong-hui,SHI Qing-sheng,MA Yong-qing . Optimal configuration of urban water supply pump stations with variable frequency speed control[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(2): 97 -102 .