Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (1): 41-50.doi: 10.6040/j.issn.1672-3961.0.2024.191
• Machine Learning & Data Mining • Previous Articles
WANG Yingnan1, ZHENG Wenping2,3*, YANG Gui2
CLC Number:
[1] BLONDEL V D, GUILLAUME J, LAMBIOTTE R. Fast Unfolding of Communities in Large Networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10):10008. [2] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6):66133. [3] CLAUSET A, NEWMAN M E J, MOORE C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(2): 66111. [4] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3): 36106. [5] BARBER M J, CLARK J W. Detecting network communities by propagating labels under constraints[J].Physical Review E, 2009, 80(2): 26129. [6] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Advances in Neural Information Processing Systems, 2001, 14(6): 585-591. [7] TENENBAUM J B, DE SILVA V, LANGGORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. [8] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000(290): 2323-2326. [9] PEROZZI B, AL-RFOU R,SKIENA S. DeepWalk: online learning of social representations[C] // Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2014: 701-710. [10] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C] // Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 855-864. [11] WANG D X, CUI P, ZHU WW. Structural deep network embedding[C] // Proceedings of 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 1225-1234. [12] CAO SS, LU W, XU Q K. Deep neural networks for learning graph representations[C] // Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 1145-1152. [13] WANG Xiao, CUI Peng, WANG Jing, et al. Community preserving network embedding[C] // Proceedings of the 32th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI press, 2017: 203-209. [14] YANG C, LIU Z Y, ZHAO D L. Network representation learning with rich text information[C] // Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2111-2117. [15] HUANG X, LI J D, HU X. Accelerated attributed network embedding[C] // Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia, USA: SIAM, 2017: 633-641. [16] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C] // International Conference on Learning Representations. Toulon, France: ICLR, 2016: 718-725. [17] VELICKOVIC P, CUCURULL G, GASANOVA A, et al. Graph attention networks[C] //Proceedings of the Int Conf on Learning Representations. Vancouver, Canada: ICLR, 2018: 485-497. [18] KIPF T N, WELLING M. Variational graph auto-encoders[C] // Proceedings of the NIPS Workshopon Bayesian Deep Learning. Barcelona, Spain: NIPS, 2016: 1611-1616. [19] SALEHI A, DAVULCU H. Graph attention auto-encoders [C] // Proceedings of the 32nd IEEE International Conference on Tools with Artificial Intelligence. Piscataway, USA: IEEE, 2020: 989-996. [20] XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C] // Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM, 2016: 478-487. [21] WANG C, PAN S R, HU R Q, et al. Attributed graph clustering: a deep attentional embedding approach[C] // Proceedings of 28th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2019: 3670-3676. [22] BO D Y, WANG X, SHI C, et al. Structural deep clustering network[C] // Proceedings of the 29th International World Wide Web Conference. New York, USA: ACM, 2020: 1400-1410. [23] 郑文萍,王英楠,杨贵.基于双监督网络嵌入的社区发现算法[J]. 模式识别与人工智能, 2022, 35(3): 283-290. ZHENG Wenping, WANG Yingnan, YANG Gui. Dual supervised network embedding based community detection algorithm[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 283-290. [24] PAN Shirui, HU Ruiqi, JIANG Jing, et al. Adversarially regularized graph auto-encoder for graph embedding[C] // Proceedings of the 27th International Joint Conference on Artificial Intelligence. Melbourne, Australia: IJCAI, 2018: 2609-2615. |
[1] | LI Erchao, ZHANG Zhizhao. Online dynamic demand vehicle routing planning [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 62-73. |
[2] | YANG Jucheng, WEI Feng, LIN Liang, JIA Qingxiang, LIU Jianzheng. A research survey of driver drowsiness driving detection [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 1-12. |
[3] | XIAO Wei, ZHENG Gengsheng, CHEN Yujia. Named entity recognition method combined with self-training model [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 96-102. |
[4] | Gang HU, Lemeng WANG, Zhiyu LU, Qin WANG, Xiang XU. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10. |
[5] | Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7. |
[6] | Yujiang FAN,Huanhuan HUANG,Jiaxiong DING,Kai LIAO,Binshan YU. Resilience evaluation system of the old community based on cloud model [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 1-9, 19. |
[7] | Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73. |
[8] | YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50. |
[9] | ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33. |
[10] | WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60. |
[11] | YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69. |
[12] | HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22. |
[13] | LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142. |
[14] | LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126. |
[15] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 44
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|