Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (6): 35-44.doi: 10.6040/j.issn.1672-3961.0.2024.114
• Machine Learning & Data Mining • Previous Articles
WANG Yuou1, YUAN Yingchun1,2*, HE Zhenxue1, HE Chen1
CLC Number:
| [1] ZHAO Y, ZHANG A Y, LI X C, et al. RETRACTED: construction of a performance evaluation system for private higher education institutions in China based on balanced scorecard[J]. International Journal of Electrical Engineering & Education, 2023, 60(Suppl.1): 923-930. [2] 孟平贵. 普通高等学校学生管理规定与学生工作规范化实务手册[M]. 长春: 吉林音像出版社, 2005. [3] FIGUEROA A. Automatically generating effective search queries directly from community question-answering questions for finding related questions[J]. Expert Systems with Applications, 2017, 77: 11-19. [4] YANG Z J, WANG Y, GAN J H, et al. Design and research of intelligent question-answering(Q&A)system based on high school course knowledge graph[J]. Mobile Networks and Applications, 2021, 26(5): 1884-1890. [5] LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 50-70. [6] YADAV V, BETHARD S. A survey on recent advances in named entity recognition from deep learning models[C] //International Conference on Computational Linguistics, Santa Fe: USA, 2018: 20-26. [7] GOYAL A, GUPTA V, KUMAR M. Recent named entity recognition and classification techniques: a systematic review[J]. Computer Science Review, 2018, 29: 21-43. [8] 储德平, 万波, 李红, 等. 基于ELMO-CNN-BiLSTM-CRF模型的地质实体识别[J]. 地球科学, 2021, 46: 3039-3048. CHU Deping, WAN Bo, LI Hong, et al. Geological entity recognition based on ELMO-CNN-BiLSTM-CRF model[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 2021, 46: 3039-3048. [9] LUO L, YANG Z H, YANG P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J]. Bioinformatics, 2018, 34(8): 1381-1388. [10] YUAN T P, QIN X Z, WEI C J. A Chinese named entity recognition method based on ERNIE-BiLSTM-CRF for food safety domain[J]. Applied Sciences, 2023, 13(5): 2849. [11] YANG J L, LIU Y N, QIAN M H, et al. Information extraction from electronic medical records using multitask recurrent neural network with contextual word embedding[J]. Applied Sciences, 2019, 9(18): 3658. [12] CHENG X W. Named entity recognition in the education domain based on BERT-BiLSTM-CRF-using data structures as an example[C] //2023 International Conference on Educational Knowledge and Infor-matization(EKI). 2023, Guangzhou, China: IEEE, 2023: 5-9. [13] ZHANG J, JING S Y, HU J H. Named entity recognition method based on bert-bilstm-attention-CRF for education field[C] //2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering(ICBAIE). Hangzhou, China: IEEE, 2023: 383-388. [14] KYUNGHYUN C, BARTVAN M, CAGLAR G, et al. Learning phrase representations using RNN Encoder-Decoder for statistical machine translation[J]. Statistics, 2014: 1724-1734. [15] 张召武, 徐彬, 高克宁, 等. 面向教育领域的基于SVR-BiGRU-CRF中文命名实体识别方法[J]. 中文信息学报, 2022, 36(7): 114-122. ZHANG Zhaowu, XU Bin, GAO Kening, et al. SVR-BiGRU-CRF based Chinese named entity recognition for education domain[J]. Journal of Chinese Information Processing, 2022, 36(7): 114-122. [16] 谢雪景, 谢忠, 马凯, 等. 结合BERT与BiGRU-Attention-CRF模型的地质命名实体识别[J]. 地质通报, 2023, 42(5): 846-855. XIE Xuejing, XIE Zhong, MA Kai, et al. Geological named entity recognition combined BERT and BiGRU-Attention-CRF model[J]. Geological Bulletin of China, 2023, 42(5): 846-855. [17] XU C W, WANG F Y, HAN J L, et al. Exploiting multiple embeddings for Chinese named entity recognition[C] //Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing, China: ACM, 2019: 2269-2272. [18] 李浩, 刘永坚, 解庆, 等. 基于多层次注意力机制的远程监督关系抽取模型[J]. 计算机科学, 2019, 46(10): 252-257. LI Hao, LIU Yongjian, XIE Qing, et al. Distant supervision relation extraction model based on multi-level attention mechanism[J]. Computer Science, 2019, 46(10): 252-257. [19] YANG X N, XIAO Y L. Named entity recognition based on BERT-MBiGRU-CRF and multi-head self-attention mechanism[C] //2022 4th International Conference on Natural Language Processing(ICNLP). Xi'an, China: IEEE, 2022: 178-183. [20] ZHANG Q H, WU M, LV P T, et al. Research on named entity recognition of Chinese electronic medical records based on multi-head attention mechanism and character-word information fusion[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(4): 4105-4116. [21] YANG Z W, MA J, CHEN H C, et al. Context-aware attentive multilevel feature fusion for named entity recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 973-984. [22] MA X D, YU R L, GAO C X, et al. Research on named entity recognition method of marine natural products based on attention mechanism[J]. Frontiers in Chemistry, 2023, 11: 958002. [23] KIM J, KO Y, SEO J. A bootstrapping approach with CRF and deep learning models for improving the biomedical named entity recognition in multi-domains[J]. IEEE Access, 2019, 7: 70308-70318. [24] 何晨, 苑迎春, 王克俭, 等. 高校学业文本命名实体识别及数据集构建研究[J]. 计算机工程与应用, 2023, 59(22): 322-328. HE Chen, YUAN Yingchun, WANG Kejian, et al. Research on college academic text named entity recognition and dataset construction[J]. Computer Engineering and Applications, 2023, 59(22): 322-328. |
| [1] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
|
||