Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (3): 100-110.doi: 10.6040/j.issn.1672-3961.0.2024.067

• Machine Learning & Data Mining • Previous Articles    

A dynamic pricing spectrum strategy responded customized requirements in heterogeneous cognitive radio-based Internet of Things

WANG Shi, XU Xiaohui*, ZHU Xiaoying, JIANG Han, CAO Dayan   

  1. WANG Shi, XU Xiaohui*, ZHU Xiaoying, JIANG Han, CAO Dayan(School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, Liaoning, China
  • Published:2025-06-05

Abstract: To address the resource allocation problem in multi-user multi-channel heterogeneous cognitive radio-based Internet of Things(CR-IoT)network under the context of spectrum trading, a mathematical analysis method for communication performance was designed, which was developed to meet the need for evaluating the cost-effectiveness of spectrum pricing for multi-service secondary users(SUs)and was applicable to various network environments and operator-specific spectrum allocation strategies. Closed-form expressions for spectrum transaction costs and performance metrics, such as throughput and packet loss rate, were derived. The cost and communication performance of SUs were analyzed independently. A dynamic pricing strategy with customized performance requirements for users was proposed to achieve multi-objective optimization of spectrum trading costs and communication performance. Simulation results demonstrated that the proposed dynamic pricing strategy effectively ensured SUs' quality of service, outperforming fixed pricing strategies and demand-based dynamic pricing strategies.

Key words: cognitive radio-Internet of Things, resource allocation, dynamic spectrum sharing, dynamic spectrum trading, performance evaluation

CLC Number: 

  • TP391.4
[1] 曹宇慧, 黄昱泽, 冯北鹏, 等. 基于深度强化学习的物联网服务协同卸载方法[J]. 山东大学学报(工学版), 2024, 54(1): 83-90. CAO Yuhui, HUANG Yuze, FENG Beipeng, et al. A collaborative service offloading approach for Internet of Things based on deep reinforcement learning[J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 83-90.
[2] 周明月, 李以峰. 性能选择的下垫式认知无线电功率分配[J]. 吉林大学学报(工学版), 2024, 54(11): 3372-3378. ZHOU Mingyue, LI Yifeng. Power allocation for a performance-selected underlay cognitive radio[J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3372-3378.
[3] LATIF S, AKRAAM S, KARAMAT T, et al. An efficient Pareto optimal resource allocation scheme in cognitive radio-based Internet of Things networks[J]. Sensors, 2022, 22(2): 451.
[4] WANG J, JIANG W B, WANG H J, et al. Multiband spectrum sensing and power allocation for a cognitive radio-enabled smart grid[J]. Sensors, 2021, 21(24): 8384.
[5] ZHANG M, ZHU X Y, WANG S, et al. A channel allocation framework under responsive pricing in heterogeneous cognitive radio network[J]. IEEE Trans-actions on Cognitive Communications and Networking, 2023, 9(4): 872-883.
[6] 王宏志, 姜方达, 周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368. WANG Hongzhi, JIANG Fangda, ZHOU Mingyue. Power allocation of cognitive radio system based on genetic particle swarm optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1363-1368.
[7] NIYATO D, HOSSAIN E. Competitive pricing for spectrum sharing in cognitive radio networks: dynamic game, inefficiency of Nash equilibrium, and collusion[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 192-202.
[8] DUAN L J, HUANG J W, SHOU B Y. Investment and pricing with spectrum uncertainty: a cognitive operator's perspective[J]. IEEE Transactions on Mobile Computing, 2011, 10(11): 1590-1604.
[9] WANG S, MAHARAJ B T, ALFA A S. Queueing analysis of performance measures under a new confi-gurable channel allocation in cognitive radio[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9571-9582.
[10] MEHMETI F, SPYROPOULOS T. Performance analysis, comparison, and optimization of interweave and underlay spectrum access in cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7143-7157.
[11] WANG S, MAHARAJ S, ALFA A S. A virtual control layer resource allocation framework for heterogeneous cognitive radio network[J]. IEEE Access, 2019, 7: 111605-111616.
[12] ZHANG M, ZHU X Y, WANG S, et al. A channel allocation framework under responsive pricing in heterogeneous cognitive radio network[J]. IEEE Transac-tions on Cognitive Communications and Networking, 2023, 9(4): 872-883.
[13] 周惟风, 朱琦. 基于拍卖理论和补偿激励的频谱共享新算法[J]. 通信学报, 2011, 32(10): 86-91. ZHOU Weifeng, ZHU Qi. Novel auction-based spectrum sharing scheme with the compensation and motivation mechanism[J]. Journal on Communications, 2011, 32(10): 86-91.
[14] 张士兵, 张国栋, 包志华. 认知无线网络中基于代理的动态频谱交易算法[J]. 通信学报, 2013, 34(3): 119-125. ZHANG Shibing, ZHANG Guodong, BAO Zhihua. Agent-based dynamic spectrum trading algorithm in cognitive radio network[J]. Journal on Communica-tions, 2013, 34(3): 119-125.
[15] HEO J, SHIN J, NAM J, et al. Mathematical analysis of secondary user traffic in cognitive radio system[C] //Proceedings of the 2008 IEEE 68th Vehicular Technology Conference. Calgary, Canada: IEEE, 2008: 1-5.
[16] SADEGHI P, KENNEDY R A, RAPAJIC P B, et al. Finite-state Markov modeling of fading channels: a survey of principles and applications[J]. IEEE Signal Processing Magazine, 2008, 25(5): 57-80.
[17] SONG M, XIN C S, ZHAO Y X, et al. Dynamic spectrum access: from cognitive radio to network radio[J]. IEEE Wireless Communications, 2012, 19(1): 23-29.
[18] 张翅, 曾碧卿, 杨劲松, 等. OFDMA认知无线电网络中面向需求的频谱共享[J]. 通信学报, 2015, 36(8): 192-206. ZHANG Chi, ZENG Biqing, YANG Jinsong, et al. Requirements-oriented spectrum sharing for OFDMA cognitive radio networks[J]. Journal on Communications, 2015, 36(8): 192-206.
[19] 李鑫滨, 韩松, 刘志新, 等. 基于次用户检测能力的认知无线电频谱共享博弈[J]. 北京理工大学学报, 2015, 35(4): 378-383. LI Xinbin, HAN Song, LIU Zhixin, et al. Spectrum sharing for cognitive radio by game theory base on the detection capabilities of secondary users[J]. Transactions of Beijing Institute of Technology, 2015, 35(4): 378-383.
[20] 徐友云, 高林. 基于步进拍卖的认知无线网络动态频谱分配[J]. 中国科学技术大学学报, 2009, 39(10): 1064-1069. XU Youyun, GAO Lin. Dynamic spectrum allocation in cognitive radio networks based on multi-auctioneer progressive auction[J]. Journal of University of Science and Technology of China, 2009, 39(10): 1064-1069.
[21] SONG M, XIN C S, ZHAO Y X, et al. Dynamic spectrum access: from cognitive radio to network radio[J]. IEEE Wireless Communications, 2012, 19(1): 23-29.
[22] GOLDSMITH A, CHUA S G. Adaptive coded modu-lation for fading channels[J]. IEEE Transactions on Communications, 1998, 46(5): 595-602.
[23] ZHU H B, ZHOU M C, ALKINS R. Group role assignment via a Kuhn-Munkres algorithm-based solution[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2012, 42(3): 739-750.
[24] 郭斌, 刘思聪, 刘琰, 等. 智能物联网: 概念、体系架构与关键技术[J]. 计算机学报, 2023, 46(11): 2259-2278. GUO Bin, LIU Sicong, LIU Yan, et al. AIoT: the concept, architecture and key techniques[J]. Chinese Journal of Computers, 2023, 46(11): 2259-2278.
[25] 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199-212. ZHANG Xiaoxi, XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199-212.
[1] ZENG Hua1, CUI Wen2, FU Lian-ning1, WU Yao-hua1*. Heuristic construction method for the initial tour of the Lin-Kernighan algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 30-35.
[2] FU Lian-ning1, CUI Wen2, ZENG Hua1 . The adaptive neighborhood selection strategy of the parallel Clarke-Wright algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 72-80.
[3] JIANG Zhi-fang1, WANG De-ming2, DU Xiao-liang1, MENG Xiang-xu1, LI Shen-fang1. Air quality predicting model based on the resource allocation network of structure optimization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(6): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!