Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (3): 88-99.doi: 10.6040/j.issn.1672-3961.0.2024.075

• Machine Learning & Data Mining • Previous Articles    

Enhanced beluga whale optimization algorithm and its application

WEN Yujie, ZHANG Damin*   

  1. College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, China
  • Published:2025-06-05

Abstract: Aiming at overcoming drawbacks of insufficient search efficiency and tendency to slip into local extremes of beluga optimization algorithm, an enhanced beluga whale optimization(EBWO)algorithm was proposed in this paper. First, a weight-based scramble beluga was included and applied to the algorithm's development phase to enrich the position updating technique, and a greedy mechanism was employed to select a better location and increase the quality of the understanding. Second, an adaptive Gaussian strategy was introduced to locally perturb the beluga in the whale falling phase, to make it adjusted to the vicinity of the optimal position to improve the convergence speed of the algorithm. Finally, a convex lens imaging learning strategy was used to carry out the information position after sharing. The comparative examination of the optimization of the ten benchmark test functions, the CEC2020 test set, and the Wilcoxon rank sum test revealed that EBWO's optimization speed and convergence accuracy had significantly improved. To test the EBWO algorithm's practicality and feasibility, it was applied to solve engineering design problems involving speed reducers and pressure vessels. It was discovered through experimental comparative analysis that the EBWO algorithm had a certain degree of superiority in solving actual optimization problems.

Key words: beluga whale optimization, scramble beluga, Gaussian variation, convex lens imaging learning, engineering optimization

CLC Number: 

  • TP301.6
[1] 杜晓昕, 周薇, 王浩, 等. 智能算法的亚群优化策略综述[J]. 计算机应用, 2024, 44(3): 819-830. DU Xiaoxin, ZHOU Wei, WANG Hao, et al. Survey of subgroup optimization strategies for intelligent algorithms[J]. Journal of Computer Applications, 2024, 44(3): 819-830.
[2] 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化方法[J]. 计算机应用, 2024, 44(5):1386-1392. TIAN Ye, CHEN Jinjin, ZHANG Xingyi. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization[J]. Journal of Computer Applications, 2024, 44(5):1386-1392.
[3] 任洁, 彭建文. 求解多目标优化问题的邻近牛顿法[J]. 应用数学学报, 2022, 45(2): 222-237. REN Jie, PENG Jianwen. Proximal Newton methods for multiobjective optimization problems[J]. Acta Mathe-maticae Applicatae Sinica, 2022, 45(2): 222-237.
[4] 张林, 沈佳颖, 胡传陆, 等. 基于信噪比的学习型哈里斯鹰算法[J/OL]. 北京航空航天大学学报. 2024. https://doi.org/10.13700/j.bh.1001-5965.2023.0433 ZHANG Lin, SHEN Jiaying, HU Chuanlu, et al. Learning Haris hawks optimization agorithm with signal-to-noise rato[J/OL]. Journal of Beljing University of Aeronautics and Astronautics. 2024. https://doi.org/10.13700/j.bh.1001-5965.2023.0433
[5] BRAIK M S. Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems[J]. Expert Systems with Applications, 2021, 174: 114685.
[6] BENYAMIN A, SOLEIMANIAN G F, SEYEDALI M. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408.
[7] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[8] SEYYEDABBASI A, KIANI F. Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems[J]. Engineering with Computers, 2023, 39(4): 2627-2651.
[9] 刘庆鑫, 齐琦, 贾鹤鸣, 等. 混合改进策略的阿奎拉鹰优化算法[J]. 山东大学学报(工学版), 2023, 53(4): 93-103. LIU Qingxin, QI Qi, JIA Heming, et al. Aquila optimizer based on hybrid improved strategies[J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 93-103.
[10] ZHONG C, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[11] 梁天添, 王英东, 杨健雄, 等. 测量丢失下时滞惯性系统故障估计的优化鲁棒Kalman滤波[J].中国惯性技术学报, 2023, 31(6):627-636. LIANG Tiantian, WANG Yingdong, YANG Jianxiong, et al. Optimized robust Kalman filtering for fault estimation of time-delay inertial systems with missing measurement[J]. Journal of Chinese Inertial Tech-nology, 2023, 31(6):627-636.
[12] 汪业正午, 季亮, 常潇, 等. 故障下新能源场站间主动电压支撑协调控制策略[J]. 太阳能学报, 2023, 44(12): 560-567. WANG Yezhengwu, JI Liang, CHANG Xiao, et al. Active voltage support coordination control strategy between new energy field stations under failure[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 560-567.
[13] 孔云, 周学良, 冷杰武. 基于改进白鲸优化算法的低碳柔性工艺规划[J]. 现代制造工程, 2024(1): 80-88. KONG Yun, ZHOU Xueliang, LENG Jiewu. Low-carbon flexible process planning based on improved beluga whale optimization algorithm[J]. Modern Manufacturing Engineering, 2024(1): 80-88.
[14] 陈元健, 黄靖, 孙晓, 等. 基于BWO优化VMD联合小波阈值的管道泄漏次声波去噪方法[J]. 机电工程技术, 2024, 53(3): 54-59. CHEN Yuanjian, HUANG Jing, SUN Xiao, et al. Research on infrasound denoising method for pipeline leakage based on BWO optimized VMD joint wavelet thresholding[J]. Mechanical & Electrical Engineering Technology, 2024, 53(3): 54-59.
[15] JIA H M, WEN Q X, WU D, et al. Modified beluga whale optimization with multi-strategies for solving engineering problems[J]. Journal of Computational Design and Engineering, 2023, 10(6): 2065-2093.
[16] 陈心怡, 张孟健, 王德光. 基于Fuch映射的改进白鲸优化算法及应用[J]. 计算机工程与科学, 2024, 46(8): 1482-1492. CHEN Xinyi, ZHANG Mengjian, WANG Deguang. Improved beluga whale optimization algorithms based on Fuch mapping and applications[J]. Computer Engineering & Science, 2024, 46(8): 1482-1492.
[17] 王亚辉, 张虎晨, 王学兵, 等. 基于混沌反向学习和水波算法改进的白鲸优化算法[J]. 计算机应用研究, 2024, 41(3): 729-735. WANG Yahui, ZHANG Huchen, WANG Xuebing, et al. Improved beluga whale optimization algorithm based onchaotic inverse learning and water wave algorithm[J]. Application Research of Computers, 2024, 41(3): 729-735.
[18] 陈曦明, 张军伟. 融合FDB策略和切线飞行的改进白鲸优化算法[J]. 计算机时代, 2023(11): 46-51. CHEN Ximing, ZHANG Junwei. Improved BWO algorithm combining FDB strategy and tangent flight[J]. Computer Era, 2023(11): 46-51.
[19] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J].计算机工程与应用, 2023, 59(22): 92-110. PAN Jincheng, LI Shaobo, ZHOU Peng, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22): 92-110.
[20] 肖怡心, 刘三阳. 融合模式搜索的蝗虫优化算法及其应用[J]. 西安电子科技大学学报, 2024, 51(2): 137-156. XIAO Yixin, LIU Sanyang. Integration of pattern search into the grasshopper optimization algorithm and its applications[J]. Journal of Xidian University, 2024, 51(2): 137-156.
[21] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[22] KENNEDY J, EBERHART R. Particle swarm opti-mization[C] // Perth, Australia: IEEE, 1995, 4: 1942-1948.
[23] 向君幸, 吴永红. 基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法[J]. 计算机应用, 2023, 43(3): 820-826. XIANG Junxing, WU Yonghong. Hybrid salp swarm and butterfly optimization algorithm combined with neighborhood centroid opposition-based learning[J]. Journal of Computer Applications, 2023, 43(3): 820-826.
[1] Jucheng YANG,Shujie HAN,Lei MAO,Xiangzi DAI,Yarui CHEN. Review of capsule network [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 1-10.
[2] Bo FANG,Hongmei CHEN. A novel double strategies evolutionary fruit fly optimization algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 22-31.
[3] WU Hongyan, JI Junzhong. Flower pollination algorithm-based functional module detection in protein-protein interaction networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 21-30.
[4] ZHOU Zhijie, ZHAO Fujun, HU Changhua, WANG Li, FENG Zhichao, LIU Taoyuan. Failure prognosis method based on evidential reasoning for aerospace relay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 22-29.
[5] REN Yongfeng, DONG Xueyu. An image saliency object detection algorithm based on adaptive manifold similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 56-62.
[6] ZHAI Jiyou, ZHOU Jingbo, REN Yongfeng, WANG Zhijian. A visual saliency detection based on background and foreground interaction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 80-85.
[7] WU Huimin, WU Jingli. An improved cycle basis algorithm for haplotyping a diploid individual [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 9-14.
[8] WANG Lihong, LI Qiang. A selective ensemble method for traveling salesman problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 42-48.
[9] REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 1-6.
[10] WEN Zhi-qiang, ZHU Wen-qiu, HU Yong-xiang. A classification method of halftone image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 7-12.
[11] XU Shan-shan, LIU Ying-an*, XU Sheng. The enhancement algorithm of the boundary information in stereo matching [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 43-49.
[12] CHEN Ming-zhi1, 2, CHEN Jian3, XU Chun-yao3, YU Lun3, LIN Bo-gang1, 2. A new clustering algorithm for user access patterns based on network virtual environments [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 43-49.
[13] WU Tian-zhu . The blind color image watermarking algorithm based on the RBF neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 51-55 .
[14] JIA Yin-liang,ZHANG Huan-chun,JING Ya-zhi,LIU Jing . A sixstep algorithm for line drawing [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 61-64 .
[15] ZHANG Jin-song,LI Qi-qiang,WANG Zhao-xia . Hybrid particle swarm optimization algorithm based on the chaos search [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 47-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!