Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (1): 86-96.doi: 10.6040/j.issn.1672-3961.0.2023.320

• Civil Engineering • Previous Articles    

Sensitivity analysis of influencing factors and prediction of shield disc cutter wear

SUN Shangqu, ZHANG Gonglu, JIANG Zhibin*, LI Zhaoyang   

  1. SUN Shangqu, ZHANG Gonglu, JIANG Zhibin*, LI Zhaoyang(College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Published:2025-02-20

CLC Number: 

  • TU94
[1] 洪开荣. 我国隧道及地下工程发展现状与展望[J]. 隧道建设, 2015, 35(2): 95-107. HONG Kairong. State-of-art and prospect of tunnels and underground works in China[J]. Tunnel Construction, 2015, 35(2): 95-107.
[2] SU W L, LI X G, JIN D L, et al. Analysis and prediction of TBM disc cutter wear when tunnelling in hard rock strata: a case study of a metro tunnel excavation in Shenzhen, China[J]. Wear, 2020: 446-447.
[3] REN D J, SHEN S L, ARULRAJAH A, et al. Prediction model of TBM disc wear during tunnelling in heterogeneous ground[J]. Rock Mechanics and Rock Engineering, 2018, 51: 3599-3611.
[4] 龚秋明, 谢兴飞, 黄流, 等. 引绰济辽工程二标隧洞段TBM滚刀磨损规律[J]. 隧道与地下工程灾害防治, 2022, 4(4): 1-10. GONG Qiuming, XIE Xingfei, HUANG Liu, et al. Wear law of TBM cutter in the tunnel section of the second bid of the Chaoer River to Xiliao River water conveyance project[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 1-10.
[5] LIU Q S, LIU J P, PAN Y C, et al. A wear rule and cutter life prediction model of a 20-inTBM cutter for granite: a case study of a water conveyance tunnel in China[J]. Rock Mechanics and Rock Engineering, 2017, 50: 1303-1320.
[6] HASSANPOUR J. Development of an empirical model to estimate disc cutter wear for sedimentary and low to medium grade metamorphic rocks[J]. Tunnelling and Underground Space Technology, 2018, 78: 90-99.
[7] 刘振丙, 方旭升, 杨辉华, 等. 基于多尺度残差神经网络的阿尔茨海默诊断分类[J]. 山东大学学报(工学版), 2018, 48(6): 1-7. LIU Zhenbing, FANG Xusheng, YANG Huihua, et al. The diagnosis of Alzheimer's disease classification based on multi-scale residual neutral network[J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 1-7.
[8] 周荣翔, 贾修一. 中文反语识别特征分析[J]. 山东大学学报(工学版), 2019, 49(1): 41-46. ZHOU Rongxiang, JIA Xiuyi. Features analysis for Chinese irony detection[J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 41-46.
[9] 潘秋景, 李晓宙, 黄杉, 等. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30. PAN Qiujing, LI Xiaozhou, HUANG Shan, et al. Application of machine learning to intelligent shield tunnelling: review and prospects[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 10-30.
[10] 丁小彬, 谢宇轩, 薛皓文, 等. 基于神经网络的盾构滚刀磨损量预测方法探讨[J]. 地下空间与工程学报, 2023, 19(2): 560-568. DING Xiaobin, XIE Yuxuan, XUE Haowen, et al. Investigation of quantitative predication of TBM disc cutter wear by ANN[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(2): 560-568.
[11] 丁小彬, 谢宇轩, 薛皓文, 等. 基于神经网络算法的滚刀磨损量预测方法[J]. 郑州大学学报(工学版), 2023, 44(1): 83-88. DING Xiaobin, XIE Yuxuan, XUE Haowen, et al. A method for disc cutter wear prediction based on neural network algorithm[J]. Journal of Zhengzhou University(Engineering Science), 2023, 44(1): 83-88.
[12] 韩冰宇, 袁大军, 金大龙, 等. 复合地层盾构刀具磨损分析与预测[J]. 土木工程学报, 2020, 53(增刊1): 137-142. HAN Bingyu, YUAN Dajun, JIN Dalong, et al. Analysis and predication od shield cutters wear in mixed ground[J]. China Civil Engineering Journal, 2020, 53(Suppl.1): 137-142.
[13] 石超, 薛皓文, 丁小彬. 基于BP神经网络的硬岩地层盾构滚刀磨损预测[J]. 现代隧道技术, 2020, 57(增刊1): 217-225. SHI Chao, XUE Haowen, DING Xiaobin. Prediction of cutter wear of shield machine in hard rock stratum based on BP neural network[J]. Modern Tunnelling Technology, 2020, 57(Suppl.1): 217-225.
[14] 杨俊哲, 邱承有. 盾构刀具磨损速率预测研究[J]. 施工技术, 2016, 45(22): 25-30. YANG Junzhe, QIU Chengyou. Prediction of cutting tool wear rate[J]. Construction Technology, 2016, 45(22): 25-30.
[15] 赵寄辰. 基于大数据的盾构机刀具剩余使用寿命预测方法研究[D]. 西安:西安电子科技大学, 2020: 21-23. ZHAO Jichen. Research on prediction method of remaining useful life of shield machine tools based on big data[D]. Xi'an: Xidian University, 2020: 21-23.
[16] QIN C J, SHI G, TAO J F, et al. Precise cutterhead torque prediction for shield tunnelling machines using a novel hybrid deep neural network[J]. Mechanical Systems and Signal Processing, 2021, 151: 107386.
[17] ZHOU X Z, ZHAO C, BIAN X C. Prediction of maximum ground surface settlement induced by shield tunneling using XGBoost algorithm with golden-sine seagull optimization[J]. Computers and Geotechnics, 2023, 154: 105156.
[18] 吴俊, 袁大军, 李兴高, 等. 盾构刀具磨损机理及预测分析[J]. 中国公路学报, 2017, 30(8): 109-142. WU Jun, YUAN Dajun, LI Xinggao, et al. Analysis on wear mechanism and prediction of shield cutter[J]. China J. Highw. Transp, 2017, 30(8): 109-142.
[19] 武松, 潘发明. SPSS统计分析大全[M]. 北京:清华大学出版社, 2014: 218.
[20] 陈勇, 邹皓天, 苏剑, 等. 基于数据挖掘的土水特征曲线影响分析及预测研究[J]. 应用基础与工程科学学报, 2023, 31(2): 451-461. CHEN Yong, ZOU Haotian, SU Jian, et al. Impact analysis and prediction research of soil-water characteristic curves based on data mining[J]. Journal of Basic Science and Engineering, 2023, 31(2): 451-461.
[21] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016: 18-19.
[22] 陈玉坤, 管会生, 周磊, 等. 基于BP神经网络的盘型滚刀磨损预测研究[J]. 现代隧道技术, 2021, 58(5): 78-84. CHEN Yukun, GUAN Huisheng, ZHOU Lei, et al. Research on the wear prediction of disc cutters based on BP neural network[J]. Modern Tunneling Technology, 2021, 58(5): 78-84.
[23] 乔金丽, 孟秋杰, 刘建琴, 等. 基于遗传规划的复杂地层中盾构滚刀磨损寿命预测[J]. 工矿自动化, 2018, 44(9): 51-58. QIAO Jinli, MENG Qiujie, LIU Jianqin, et al. Prediction of wear life of shield disc cutter in complex formations based on genetic programming[J]. Industry and Mine Automation, 2018, 44(9): 51-58.
[24] ELBAZ Khakid, SHEN Shuilong, ZHOU Annan, et al. Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-Type neural network[J]. Engineering, 2020, 7(2): 238-251.
[25] 李笑, 苏小江. 基于Elman神经网络的盾构滚刀磨损预测方法研究[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(6): 1121-1124. LI Xiao, SU Xiaojiang. A new method for forecasting shield's disc-cutters wearing based on Elman neural network[J]. Journal of Liaoning Technical University(Natural Science), 2010, 29(6): 1121-1124.
[26] ZHOU C, DING L Y, ZHOU Y, et al. Hybrid support vector machine optimization model for prediction of energy consumption of cutter head drives in shield tunneling[J]. Journal of Computing in Civil Engineering, 2019, 33(3): 04019019.1-04019019.17.
[27] 王思琪. 基于支持向量机的盾构刀具磨损预测研究[D]. 南京: 南京理工大学, 2020: 59-81. WANG Siqi. Research on wear prediction of shield disc cutter based on support vector machine[D]. Nanjing: Nanjing University of Science & Technology, 2020: 59-81.
[28] 周志锋. 基于支持向量机的盾构滚刀磨损预测研究[D]. 广州: 广州大学, 2018: 35-47. ZHOU Zhifeng. Research on wear prediction of shield hob based on support vector machine[D]. Guangzhou: Guangzhou University, 2018: 35-47.
[29] 李笑, 苏小江. 盾构滚刀磨损的多元非线性回归预测[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(6): 281-283. LI Xiao, SU Xiaojiang. Forecast of wear shield's disc cutters based on multivariate nonlinear regression[J]. Journal of Liaoning Technical University(Natural Science), 2010, 29(6): 281-283.
[30] 陈明. MATLAB神经网络原理与案例精讲[M]. 北京: 清华大学出版社, 2013.
[1] LIU Xiangkun, LI Shuchen, WANG Xiuwei, TIAN Ye, XU Jingwei, WEI Qingwu, ZHAO Yongxi. CFD-based numerical simulation of slurry migration of trench cutter and construction optimization [J]. Journal of Shandong University(Engineering Science), 2023, 53(3): 69-77.
[2] LIU Jifeng, YANG Huanhuan. Risk control of extremely close twin shield tunnels nearby passing intensive buildings based on informative construction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 102-111.
[3] WU Nong, ZHANG Xiao, LI Mengtian. Research on new grouting equipment and method for the treatment of gushing water in porosity sandstone [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(4): 64-68.
[4] DIAO Yong, TIAN Si-Meng, CAO Zhe-Meng. Geological work method for the construction of the Yichang Wanzhou Railway tunnel in high risk karst areas [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 91-95.
[5] GENG Qi, ZHANG Junjie, WANG Ke, LU Yufeng, XIE Liyang, YE Min. Simulation and experimental study on cutting process of tunnel boring machine(TBM)cutters based on FEM-SPH coupled method [J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 93-102.
Viewed
Full text
39
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 39

  From local
  Times 39
  Rate 100%

Abstract
66
Just accepted Online first Issue
0 0 66
  From Others
  Times 66
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!