Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (6): 19-28.doi: 10.6040/j.issn.1672-3961.0.2023.220

• Machine Learning & Data Mining • Previous Articles    

A security device wearing detection method integrating FasterNet and RepVGG

ZHANG Man, SUN Kaijun*, LI Xiang, SUN Jizhou   

  1. Faculty of Computer and Software, Huaiyin Institute of Technology, Huaian 223003, Jiangsu, China
  • Published:2024-12-26

CLC Number: 

  • TP391
[1] DHILLON A, VERMA G K. Convolutional neural network: a review of models, methodologies and applications to object detection[J]. Progress in Artificial Intelligence, 2020, 9(2):85-112.
[2] ZHAO Z Q, ZHENG P, XU S, et al. Object detection with deep learning: a review[J]. IEEE transactions on neural networks and learning systems, 2019, 30(11):3212-3232.
[3] LI Z, XIE W, ZHAGN L, et al. Toward efficient safety helmet detection based on YoloV5 with hierarchical positive sample selection and box density filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-14.
[4] FAROOQ M U, BHUTTO M A, KAZI A K. Real-time safety helmet detection using Yolov5 at construction sites[J]. Intelligent Automation & Soft Computing, 2023, 36(1):911-927.
[5] SONG R, WANG Z. RBFPDet: an anchor-free helmet wearing detection method[J]. Applied Intelligence, 2023, 53(5): 5013-5028.
[6] 张锦,屈佩琪,孙程,等. 基于改进YOLOv5的安全帽佩戴检测算法[J]. 计算机应用,2022,42(4):1292-1300. ZHANG Jin, QU Peiqi, SUN Cheng, et al. Helmet wearing detection algorithm based on improved YOLOv5[J]. Journal of Computer Applications, 2022, 42(4):1292-1300.
[7] 田坤,李冠,赵卫东. 基于YOLO和极限学习机的驾驶员安全带检测模型研究[J].计算机应用与软件,2019,36(11):196-201. TIAN Kun, LI Guan, ZHAO Weidong. Research on driver seat belt detection model based on YOLO and extreme learning machine[J]. Computer Applications and Software, 2019, 36(11):196-201.
[8] WAN L, LIU R, SUN L, et al. UAV swarmbased radar signal sorting via multi-source data fusion: a deep transfer learning framework[J]. Information Fusion, 2022, 78:90-101.
[9] PAOLETTI M E, HAUT J M, PEREIRA N S, et al. Ghostnet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10378-10393.
[10] HUANG T Y, LEE M C, YANG C H, et al. YOLO-ORE:adeep learning-aided object recognition approach for radar systems[J]. IEEE Transactions on Vehicular Technology, 2022, 72:5715-5731.
[11] FAN S, LIANG X, HUANG W, et al. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOv4 network[J]. Computers and Electronics in Agriculture, 2022, 193:106715.
[12] GAI R, CHEN N, YUAN H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model[J]. Neural Computing and Applications, 2023, 35(19):13895-13906.
[13] WANG K, LIEW J H, ZOU Y, et al. Panet: few-shot image semantic segmentation with prototype alignment[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea:IEEE, 2019:9197-9206.
[14] PATEL I, PATEL S. An optimized deep learning model for flower classification using NAS-FPN and faster R-CNN[J]. International Journal of Scientific & Technology Research, 2020, 9(3):5308-5318.
[15] SYAZWANY N S, NAM J H, LEE S C. MM-BiFPN:multi-modality fusion network with Bi-FPN for MRI brain tumor segmentation[J]. IEEE Access, 2021, 9:160708-160720.
[16] 谢椿辉,吴金明,徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J].计算机工程与应用, 2023, 58(9):1-11. XIE Chunhui, WU Jinming, XU Huaiyu. An improved small target detection algorithm for UAV image based on YOLOv5 [J]. Computer Engineering and Applications, 2023, 58(9):1-11.
[17] SINDAGI V A, OZA P, YASARLA R, et al. Prior-based domain adaptive object detection for hazy and rainy conditions[C] //Computer Vision-ECCV 2020:16th European Conference. Glasgow, UK: Springer, 2020:763-780.
[18] KIM J H, LIM N, PARK Y W, et al. Object detection and classification based on YOLO-V5 with improved maritime dataset[J]. Journal of Marine Science and Engineering, 2022, 10(3):377.
[19] LIU W, REN G, YU R, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: IEEE, 2022, 36(2):1792-1800.
[20] YUN S, HAN D, OH S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019:6023-6032
[21] CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada, IEEE, 2023:12021-12031.
[22] DONG X, ZHANG X, MA N, et al. Repvgg: Making vgg-style convnets great again[C] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE, 2021:13733-13742.
[23] WAN G, FANG H, WANG D, et al. Ceramic tile surface defect detection based on deep learning[J]. Ceramics International, 2022, 48(8):11085-11093.
[1] LI Erchao, ZHANG Zhizhao. Online dynamic demand vehicle routing planning [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 62-73.
[2] YANG Jucheng, WEI Feng, LIN Liang, JIA Qingxiang, LIU Jianzheng. A research survey of driver drowsiness driving detection [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 1-12.
[3] XIAO Wei, ZHENG Gengsheng, CHEN Yujia. Named entity recognition method combined with self-training model [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 96-102.
[4] Gang HU, Lemeng WANG, Zhiyu LU, Qin WANG, Xiang XU. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10.
[5] Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7.
[6] Yujiang FAN,Huanhuan HUANG,Jiaxiong DING,Kai LIAO,Binshan YU. Resilience evaluation system of the old community based on cloud model [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 1-9, 19.
[7] Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73.
[8] YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50.
[9] ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33.
[10] WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60.
[11] YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69.
[12] HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22.
[13] LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142.
[14] LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126.
[15] Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!