Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (6): 8-18.doi: 10.6040/j.issn.1672-3961.0.2023.174

• Machine Learning & Data Mining • Previous Articles    

Medical image segmentation model based on double decoder

LIU Quanjin1, JI Wen1, HU Langtao1, HUANG Huilei1, YANG Rui1, LI Xiang2,3, GAO Zewen2,3, WEI Benzheng2,3*   

  1. 1. School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, Anhui, China;
    2. Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, Shandong, China;
    3. Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, Shandong, China
  • Published:2024-12-26

CLC Number: 

  • TP391
[1] SHAMSHAD F, KHAN S, ZAMIR S W, et al. Transformers in medical imaging: a survey[J]. Medical Image Analysis, 2023, 88: 102802.
[2] BAUR D, KROBOTH K, HEYDE C, et al. Convolutional neural networks in spinal magnetic resonance imaging: a systematic review[J]. World Neurosurgery, 2022, 166: 60-70.
[3] AHIR B K, NGELHARD H H, AKKA S S. Tumor development and angiogenesis in adult brain tumor: glioblastoma[J]. Molecular Neurobiology, 2020, 57: 2461-2478.
[4] LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro-Oncology, 2021, 23(8): 1231-1251.
[5] OLAF R, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C] //Proceedings of the 18th Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: MICCAI, 2015: 234-241.
[6] VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical Transformer: gated axial-attention for medical image segmentation[C] //Proceedings of the 24th Medical Image Computing and Computer Assisted Intervention. Strasbourg, France: MICCAI, 2021: 36-46.
[7] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL].(2018-05-20)[2023-07-08]. https://arxiv.org/abs/1804.03999.
[8] HUANG X, CHEN J, CHEN M, et al. TDD-UNet: Transformer with double decoder UNet for COVID-19 lesions segmentation[J]. Computers in Biology and Medicine, 2022, 151: 106306.
[9] 毕秀丽, 陆猛, 肖斌, 等. 基于双解码U型卷积神经网络的胰腺分割[J]. 软件学报, 2022, 33(5): 1947-1958. BI Xiuli, LU Meng, XIAO Bin, et al. Pancreas segmentation based on dual-decoding U-Net[J]. Journal of Software, 2022, 33(5): 1947-1958.
[10] 苏赋, 方东, 王龙业, 等. 基于双解码路径DD-UNet的脑肿瘤图像分割算法[J]. 光电子激光, 2023(3): 328-336. SU Fu, FANG Dong, WANG Longye, et al. Brain tumor image segmentation algorithm based on dual decoding path DD-UNet[J]. Journal of Optoelectronics Laser, 2023(3): 328-336.
[11] 侯月武, 刘兆英, 张婷, 等. 基于改进的DUNet遥感图像道路提取[J]. 山东大学学报(工学版), 2022, 52(4): 29-37. HOU Yuewu, LIU Zhaoying, ZHANG Ting, et al. Road extraction from remote sensing images based on improved DUNet[J]. Journal of Shandong University(Engineering Science), 2022, 52(4): 29-37.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: NIPS, 2017: 6000-6010.
[13] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL].(2021-06-03)[2023-07-08]. https://arxiv.org/abs/2010.11929.
[14] ZHU X, SU W, LU L, et al. Deformable DETR:deformable Transformers for end-to-end object detection[EB/OL].(2021-05-18)[2023-07-08]. https://arxiv.org/abs/2010.04159.
[15] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C] //Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021: 10012-10022.
[16] CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)[2023-07-08]. https://arxiv.org/abs/2102.04306.
[17] ZHANG Y, LIU H, HU Q. TransFuse: fusing transformers and CNNs for medical image segmentation[C] //Proceedings of the 24th Medical Image Computing and Computer Assisted Intervention. Strasbourg, France: MICCAI, 2021: 14-24.
[18] CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure Transformer for medical image segmentation[C] //European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022: 205-218.
[19] D'ASCOLI S, TOUVRON H, LEAVITT M L, et al. ConViT: improving vision Transformers with soft convolutional inductive biases[C] //Proceedings of the 38th International Conference on Machine Learning. [S.l.] : PMLR, 2021: 2286-2296.
[20] LOFFLER M, SEKUBOYINA A, JAKOB A, et al. A vertebral segmentation dataset with fracture grading[J]. Radiology: Artificial Intelligence, 2020, 2(4): e190138.
[21] SEKUBOYINA A, HUSSEINI M, BAYAT A, et al. VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images[J]. Medical Image Analysis, 2021, 73: 102166.
[22] BAKAS S, REYES M, JAKAB A, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge[EB/OL].(2021-04-23)[2023-07-08]. https://arxiv.org/abs/1811.02629.
[23] 刘方旭, 王建, 魏本征. 基于多空间注意力的小儿肺炎辅助诊断算法[J]. 山东大学学报(工学版), 2023, 53(2): 135-142. LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention[J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142.
[24] 陆猛. 基于全卷积神经网络的医学图像分割[D]. 重庆: 重庆邮电大学, 2021. LU Meng. Medical image segmentation based on full convolutional neural network[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021.
[25] HE X, ZHOU Y, ZHAO J, et al. Swin Transformer embedding UNet for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[26] LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C] //Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2117-2125.
[27] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C] //Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 3431-3440.
[28] CHEN L, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-12-05)[2023-11-08]. https://arxiv.org/abs/1706.05587.
[29] DDS-UNet医学图像分割算法源代码[EB/OL].(2023-07-20)[2023-11-08]. https://github.com/DeepPicEI/DDS-UNet.
[1] LI Erchao, ZHANG Zhizhao. Online dynamic demand vehicle routing planning [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 62-73.
[2] YANG Jucheng, WEI Feng, LIN Liang, JIA Qingxiang, LIU Jianzheng. A research survey of driver drowsiness driving detection [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 1-12.
[3] XIAO Wei, ZHENG Gengsheng, CHEN Yujia. Named entity recognition method combined with self-training model [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 96-102.
[4] Gang HU, Lemeng WANG, Zhiyu LU, Qin WANG, Xiang XU. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10.
[5] Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7.
[6] Yujiang FAN,Huanhuan HUANG,Jiaxiong DING,Kai LIAO,Binshan YU. Resilience evaluation system of the old community based on cloud model [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 1-9, 19.
[7] Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73.
[8] YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50.
[9] ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33.
[10] WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60.
[11] YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69.
[12] HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22.
[13] LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142.
[14] LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126.
[15] Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!