Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (6): 1-7.doi: 10.6040/j.issn.1672-3961.0.2023.157
• Machine Learning & Data Mining •
WANG Mei1,2, SONG Kaiwen1, LIU Yong3,4*, WANG Zhibao1, WAN Da1
CLC Number:
[1] 章永来, 周耀鉴. 聚类算法综述[J]. 计算机应用, 2019, 39(7): 1869-1882. ZHANG Yonglai, ZHOU Yaojian. Review of clustering algorithms[J]. Journal of Computer Applications, 2019, 39(7): 1869-1882. [2] MADHULATHA T S. An overview on clustering methods[J]. IOSR Journal of Engineering, 2012, 2(4): 719-725. [3] XU R, WUNSCH D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678. [4] 徐金东, 赵甜雨, 冯国政, 等. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079-2086. XU Jindong, ZHAO Tianyu, FENG Guozheng, et al. Image segmentation algorithm based on context fuzzy C-means clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079-2086. [5] 姜东明, 杨火根. 融合图卷积网络模型的无监督社区检测算法[J]. 计算机工程与应用, 2020, 56(20): 59-66. JIANG Dongming, YANG Huogen. Unsupervised community detection algorithm integrating graph convolutional network model[J]. Computer Engineering and Applications, 2020, 56(20): 59-66. [6] 刘大莲, 田英杰. 可拓数据挖掘在学生成绩分析中的应用研究[J]. 智能系统学报, 2022, 17(4): 707-713. LIU Dalian, TIAN Yingjie. Application of extension data mining in student achievement analysis[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 707-713. [7] SCHÖLKOPF B, SMOLA A, MÜLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. [8] ZHAO B, KWOK J T, ZHANG C. Multiple kernel clustering[C] //Proceedings of the 2009 SIAM International Conference on Data Mining. Sparks, USA: Society for Industrial and Applied Mathematics, 2009: 638-649. [9] LU Y, WANG L, LU J, et al. Multiple kernel clustering based on centered kernel alignment[J]. Pattern Recognition, 2014, 47(11): 3656-3664. [10] GÖNEN M, MARGOLIN A A. Localized data fusion for kernel K-means clustering with application to cancer biology[J]. Advances in Neural Information Processing Systems, 2014, 27: 1305-1313. [11] 俞磊, 朱铮, 蒋超, 等. 自适应局部核的最优邻域多核聚类[J]. 控制工程, 2022, 29(1): 182-192. YU Lei, ZHU Zheng, JIANG Chao, et al. Optimal neighborhood multiple kernel clustering based on adaptive local kernel[J]. Control Engineering of China, 2022, 29(1): 182-192. [12] JIA L, LI M, ZHANG P, et al. SAR image change detection based on multiple kernel K-means clustering with local-neighborhood information[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 856-860. [13] 欧琦媛, 祝恩. 基于压缩子空间对齐的多核聚类算法[J]. 计算机工程与科学, 2021, 43(10): 1730-1735. OU Qiyuan, ZHU En. Multiple-kernel clustering based on compressed subspace alignment[J]. Computer Engineering & Science, 2021, 43(10): 1730-1735. [14] LIU X. Simple MKKM: simple multiple kernel K-means[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023:5174-5186. [15] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [16] ZHUANG J, TSANG I W, HOI S C H. Two-layer multiple kernel learning[C] //Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Florida, USA: JMLR, 2011: 909-917. [17] 王梅, 宋晓晖, 刘勇, 等. 神经正切核K-means聚类[J]. 计算机应用, 2022, 42(11): 3330-3336. WANG Mei, SONG Xiaohui, LIU Yong, et al. Neural tangent kernel K-means clustering[J]. Journal of Computer Applications, 2022, 42(11): 3330-3336. [18] BEN-HUR A, HORN D, SIEGELMANN H T, et al. Support vector clustering[J]. Journal of Machine Learning Research, 2001, 2(12): 125-137. [19] ALZATE C, SUYKENS J A K. Sparse kernel spectral clustering models for large-scale data analysis[J]. Neurocomputing, 2011, 74(9): 1382-1390. [20] 张莉, 周伟达, 焦李成. 核聚类算法[J]. 计算机学报, 2002(6): 587-590. ZHANG Li, ZHOU Weida, JIAO Licheng. Kernel clustering algorithm[J]. Chinese Journal of Computers, 2002(6): 587-590. [21] TZORTZIS G, LIKAS A. The global kernel K-means clustering algorithm[C] //Proceedings of 2008 IEEE International Joint Conference on Neural Networks. Hong Kong, China: IEEE, 2008: 1977-1984. [22] LIU Y. Refined learning bounds for kernel and approximate K-means[J]. Advances in Neural Infor-mation Processing Systems, 2021, 34: 6142-6154. [23] HUANG H C, CHUANG Y Y, CHEN C S. Multiple kernel fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2011, 20(1): 120-134. [24] YU S, TRANCHEVENT L, LIU X, et al. Optimized data fusion for kernel K-means clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(5): 1031-1039. [25] XIA R, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Quebec, Canada: AAAI, 2014: 2149-2155. [26] GUO D, ZHANG J, LIU X, et al. Multiple kernel learning based multi-view spectral clustering[C] //Proceedings of the 22nd International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014: 3774-3779. [27] CHO Y, SAUL L. Kernel methods for deep learning[J]. Advances in Neural Information Processing Systems, 2009, 22: 342-350. [28] STROBL E V, VISWESWARAN S. Deep multiple kernel learning[C] // Proceedings of the 12th International Conference on Machine Learning and Applications. Miami, USA: IEEE, 2013: 414-417. [29] REBAI I, BENAYED Y, MAHDI W. Deep multilayer multiple kernel learning[J]. Neural Computing and Applications, 2016, 27(8): 2305-2314. [30] LIU Y, LIAO S, HOU Y. Learning kernels with upper bounds of leave-one-out error[C] //Proceedings of the 20th ACM International Conference on Information and Knowledge Management. Birmingham, UK: ACM, 2011: 2205-2208. [31] JIU M, SAHBI H. Nonlinear deep kernel learning for image annotation[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1820-1832. [32] CHEN X, PENG X, DUAN R, et al. Deep kernel learning method for SAR image target recognition[J]. Review of Scientific Instruments, 2017, 88(10): 104706. [33] ERHAN D, MANZAGOL P A, BENGIO Y, et al. The difficulty of training deep architectures and the effect of unsupervised pre-training[C] //Proceedings of the 2009 Artificial Intelligence and Statistics.Florida, USA: JMLR, 2009: 153-160. [34] WIEHMAN S, KROON S, DE VILLIERS H. Unsupervised pre-training for fully convolutional neural networks[C] //Proceedings of the 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference. Stellenbosch, South Africa: IEEE, 2016: 1-6. [35] SUN X, YANG Z, ZHANG C, et al. Conditional gaussian distribution learning for open set recognition[C] //Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle, USA: IEEE, 2020: 13480-13489. [36] CHOUDHURI N, GHOSAL S, ROY A. Nonparametric binary regression using a Gaussian process prior[J]. Statistical Methodology, 2007, 4(2): 227-243. [37] SONG H, THIAGARAJAN J J, SATTIGERI P, et al. Optimizing kernel machines using deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5528-5540. [38] MAMAT N, OTHMAN M F, ABDULGHAFOR R, et al. Enhancing image annotation technique of fruit classification using a deep learning approach[J]. Sustainability, 2023, 15(2): 1-19. [39] SAMBATURU B, GUPTA A, JAWAHAR C V, et al.ScribbleNet: efficient interactive annotation of urban city scenes for semantic segmentation[J]. Pattern Recog-nition, 2023, 133: 109011. |
[1] | LI Erchao, ZHANG Zhizhao. Online dynamic demand vehicle routing planning [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 62-73. |
[2] | YANG Jucheng, WEI Feng, LIN Liang, JIA Qingxiang, LIU Jianzheng. A research survey of driver drowsiness driving detection [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 1-12. |
[3] | XIAO Wei, ZHENG Gengsheng, CHEN Yujia. Named entity recognition method combined with self-training model [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 96-102. |
[4] | Gang HU, Lemeng WANG, Zhiyu LU, Qin WANG, Xiang XU. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10. |
[5] | Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7. |
[6] | Yujiang FAN,Huanhuan HUANG,Jiaxiong DING,Kai LIAO,Binshan YU. Resilience evaluation system of the old community based on cloud model [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 1-9, 19. |
[7] | Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73. |
[8] | YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50. |
[9] | ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33. |
[10] | WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60. |
[11] | YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69. |
[12] | HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22. |
[13] | LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142. |
[14] | LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126. |
[15] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
|