Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (6): 1-7.doi: 10.6040/j.issn.1672-3961.0.2023.157

• Machine Learning & Data Mining •    

DMKK-means: a deep multiple kernel K-means clustering algorithm

WANG Mei1,2, SONG Kaiwen1, LIU Yong3,4*, WANG Zhibao1, WAN Da1   

  1. 1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Heilongjiang Key Laboratory of Petroleum Big Data and Intelligent Analysis, Daqing 163318, Heilongjiang, China;
    3. Gaoling School of Artificial Intelligence, Renmin University of China, Beijing 100049, China;
    4. Beijing Key Laboratory of Big Data Management and Analysis Method(School of Information, Renmin University of China), Beijing 100049, China
  • Published:2024-12-26

CLC Number: 

  • TP391
[1] 章永来, 周耀鉴. 聚类算法综述[J]. 计算机应用, 2019, 39(7): 1869-1882. ZHANG Yonglai, ZHOU Yaojian. Review of clustering algorithms[J]. Journal of Computer Applications, 2019, 39(7): 1869-1882.
[2] MADHULATHA T S. An overview on clustering methods[J]. IOSR Journal of Engineering, 2012, 2(4): 719-725.
[3] XU R, WUNSCH D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678.
[4] 徐金东, 赵甜雨, 冯国政, 等. 基于上下文模糊C均值聚类的图像分割算法[J]. 电子与信息学报, 2021, 43(7): 2079-2086. XU Jindong, ZHAO Tianyu, FENG Guozheng, et al. Image segmentation algorithm based on context fuzzy C-means clustering[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2079-2086.
[5] 姜东明, 杨火根. 融合图卷积网络模型的无监督社区检测算法[J]. 计算机工程与应用, 2020, 56(20): 59-66. JIANG Dongming, YANG Huogen. Unsupervised community detection algorithm integrating graph convolutional network model[J]. Computer Engineering and Applications, 2020, 56(20): 59-66.
[6] 刘大莲, 田英杰. 可拓数据挖掘在学生成绩分析中的应用研究[J]. 智能系统学报, 2022, 17(4): 707-713. LIU Dalian, TIAN Yingjie. Application of extension data mining in student achievement analysis[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 707-713.
[7] SCHÖLKOPF B, SMOLA A, MÜLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
[8] ZHAO B, KWOK J T, ZHANG C. Multiple kernel clustering[C] //Proceedings of the 2009 SIAM International Conference on Data Mining. Sparks, USA: Society for Industrial and Applied Mathematics, 2009: 638-649.
[9] LU Y, WANG L, LU J, et al. Multiple kernel clustering based on centered kernel alignment[J]. Pattern Recognition, 2014, 47(11): 3656-3664.
[10] GÖNEN M, MARGOLIN A A. Localized data fusion for kernel K-means clustering with application to cancer biology[J]. Advances in Neural Information Processing Systems, 2014, 27: 1305-1313.
[11] 俞磊, 朱铮, 蒋超, 等. 自适应局部核的最优邻域多核聚类[J]. 控制工程, 2022, 29(1): 182-192. YU Lei, ZHU Zheng, JIANG Chao, et al. Optimal neighborhood multiple kernel clustering based on adaptive local kernel[J]. Control Engineering of China, 2022, 29(1): 182-192.
[12] JIA L, LI M, ZHANG P, et al. SAR image change detection based on multiple kernel K-means clustering with local-neighborhood information[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 856-860.
[13] 欧琦媛, 祝恩. 基于压缩子空间对齐的多核聚类算法[J]. 计算机工程与科学, 2021, 43(10): 1730-1735. OU Qiyuan, ZHU En. Multiple-kernel clustering based on compressed subspace alignment[J]. Computer Engineering & Science, 2021, 43(10): 1730-1735.
[14] LIU X. Simple MKKM: simple multiple kernel K-means[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023:5174-5186.
[15] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[16] ZHUANG J, TSANG I W, HOI S C H. Two-layer multiple kernel learning[C] //Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Florida, USA: JMLR, 2011: 909-917.
[17] 王梅, 宋晓晖, 刘勇, 等. 神经正切核K-means聚类[J]. 计算机应用, 2022, 42(11): 3330-3336. WANG Mei, SONG Xiaohui, LIU Yong, et al. Neural tangent kernel K-means clustering[J]. Journal of Computer Applications, 2022, 42(11): 3330-3336.
[18] BEN-HUR A, HORN D, SIEGELMANN H T, et al. Support vector clustering[J]. Journal of Machine Learning Research, 2001, 2(12): 125-137.
[19] ALZATE C, SUYKENS J A K. Sparse kernel spectral clustering models for large-scale data analysis[J]. Neurocomputing, 2011, 74(9): 1382-1390.
[20] 张莉, 周伟达, 焦李成. 核聚类算法[J]. 计算机学报, 2002(6): 587-590. ZHANG Li, ZHOU Weida, JIAO Licheng. Kernel clustering algorithm[J]. Chinese Journal of Computers, 2002(6): 587-590.
[21] TZORTZIS G, LIKAS A. The global kernel K-means clustering algorithm[C] //Proceedings of 2008 IEEE International Joint Conference on Neural Networks. Hong Kong, China: IEEE, 2008: 1977-1984.
[22] LIU Y. Refined learning bounds for kernel and approximate K-means[J]. Advances in Neural Infor-mation Processing Systems, 2021, 34: 6142-6154.
[23] HUANG H C, CHUANG Y Y, CHEN C S. Multiple kernel fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2011, 20(1): 120-134.
[24] YU S, TRANCHEVENT L, LIU X, et al. Optimized data fusion for kernel K-means clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(5): 1031-1039.
[25] XIA R, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Quebec, Canada: AAAI, 2014: 2149-2155.
[26] GUO D, ZHANG J, LIU X, et al. Multiple kernel learning based multi-view spectral clustering[C] //Proceedings of the 22nd International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014: 3774-3779.
[27] CHO Y, SAUL L. Kernel methods for deep learning[J]. Advances in Neural Information Processing Systems, 2009, 22: 342-350.
[28] STROBL E V, VISWESWARAN S. Deep multiple kernel learning[C] // Proceedings of the 12th International Conference on Machine Learning and Applications. Miami, USA: IEEE, 2013: 414-417.
[29] REBAI I, BENAYED Y, MAHDI W. Deep multilayer multiple kernel learning[J]. Neural Computing and Applications, 2016, 27(8): 2305-2314.
[30] LIU Y, LIAO S, HOU Y. Learning kernels with upper bounds of leave-one-out error[C] //Proceedings of the 20th ACM International Conference on Information and Knowledge Management. Birmingham, UK: ACM, 2011: 2205-2208.
[31] JIU M, SAHBI H. Nonlinear deep kernel learning for image annotation[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1820-1832.
[32] CHEN X, PENG X, DUAN R, et al. Deep kernel learning method for SAR image target recognition[J]. Review of Scientific Instruments, 2017, 88(10): 104706.
[33] ERHAN D, MANZAGOL P A, BENGIO Y, et al. The difficulty of training deep architectures and the effect of unsupervised pre-training[C] //Proceedings of the 2009 Artificial Intelligence and Statistics.Florida, USA: JMLR, 2009: 153-160.
[34] WIEHMAN S, KROON S, DE VILLIERS H. Unsupervised pre-training for fully convolutional neural networks[C] //Proceedings of the 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference. Stellenbosch, South Africa: IEEE, 2016: 1-6.
[35] SUN X, YANG Z, ZHANG C, et al. Conditional gaussian distribution learning for open set recognition[C] //Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle, USA: IEEE, 2020: 13480-13489.
[36] CHOUDHURI N, GHOSAL S, ROY A. Nonparametric binary regression using a Gaussian process prior[J]. Statistical Methodology, 2007, 4(2): 227-243.
[37] SONG H, THIAGARAJAN J J, SATTIGERI P, et al. Optimizing kernel machines using deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5528-5540.
[38] MAMAT N, OTHMAN M F, ABDULGHAFOR R, et al. Enhancing image annotation technique of fruit classification using a deep learning approach[J]. Sustainability, 2023, 15(2): 1-19.
[39] SAMBATURU B, GUPTA A, JAWAHAR C V, et al.ScribbleNet: efficient interactive annotation of urban city scenes for semantic segmentation[J]. Pattern Recog-nition, 2023, 133: 109011.
[1] LI Erchao, ZHANG Zhizhao. Online dynamic demand vehicle routing planning [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 62-73.
[2] YANG Jucheng, WEI Feng, LIN Liang, JIA Qingxiang, LIU Jianzheng. A research survey of driver drowsiness driving detection [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 1-12.
[3] XIAO Wei, ZHENG Gengsheng, CHEN Yujia. Named entity recognition method combined with self-training model [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 96-102.
[4] Gang HU, Lemeng WANG, Zhiyu LU, Qin WANG, Xiang XU. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10.
[5] Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7.
[6] Yujiang FAN,Huanhuan HUANG,Jiaxiong DING,Kai LIAO,Binshan YU. Resilience evaluation system of the old community based on cloud model [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 1-9, 19.
[7] Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73.
[8] YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50.
[9] ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33.
[10] WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60.
[11] YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69.
[12] HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22.
[13] LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142.
[14] LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126.
[15] Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!