Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (6): 49-56.doi: 10.6040/j.issn.1672-3961.0.2023.113
• Machine Learning & Data Mining • Previous Articles
MA Jun1,2, CHE Jin1,2*, HE Yuting1,2, MA Pengsen1,2
CLC Number:
[1] YI X, WALIA E, BABYN P. Generative adversarial network in medical imaging: a review[J]. Medical Image Analysis, 2019, 58:101552. [2] 胡名起. 基于生成对抗网络的文本生成图像研究[D].南京:东南大学, 2020. HU Mingqi. Research on text-to-image generation based on generative adversarial network[D]. Nanjing: Southeast University, 2020. [3] GOLDBERG Y. Neural network methods for natural language processing[M]. Berlin: Springer Nature, 2022. [4] XU K, BA J, KIROS R, et al. Show, attend and tell:neural image caption generation with visual attention[C] //Proceedings of International Conference on Machine Learning. Lille, France: PMLR, 2015: 2048-2057. [5] ZHANG H, XU T, LI H S, et al. StackGAN: realistic image synthesis with stacked generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1947-1962 [6] XU T, ZHANG P, HUANG Q, et al. AttnGAN: fine-grained text to image generation with attentional generative adversarial networks[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Dhaka, Bangladesh: IEEE Press, 2018: 1316-1324. [7] TAO M, TANG H, WU S, et al. DF-GAN: deep fusion generative adversarial networks for text-to-image synthesis[EB/OL].(2020-08-13)[2023-03-18]. https://arxiv.org/abs/2008.05865v1. [8] DU C, ZHANG L, SUN X, et al. Enhanced multi-channel feature synthesis for hand gesture recognition based on CNN with a channel and spatial attention mechanism[J]. IEEE Access, 2020, 8: 144610-144620. [9] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[J]. Advances in Neural Information Processing Systems, 2016, 29(2): 2234-2242. [10] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[J]. Advances in Neural Information Processing Systems, 2017, 30(4): 6629-6640. [11] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [12] REED S, AKATA Z, YAN X, et al. Generative adversarial text to image synthesis[C] // Proceedings of International Conference on Machine Learning. Lille, France: PMLR, 2016: 1060-1069. [13] NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C] //Proceedings of 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing. Bhubaneswar, India: IEEE Press, 2008:722-729. [14] WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD birds-200-2011 dataset[J]. California Institute of Technology, 2011, 7(1): 1-8. [15] ZHANG H, XU T, LI H S, et al. StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks[C] //Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE Press, 2017: 5908-5916. [16] LI B, QI X, LUKASIEWICZ T, et al. Controllable text-to-image generation[J]. Advances in Neural Information Processing Systems, 2019, 32(3):2065-2075. [17] ZHU M F,PAN P B,CHEN W,et al. DM-GAN:dynamic memory generative adversarial networks for text-to-image synthesis[C] //Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington,USA: IEEE Press, 2019:5795-5803. [18] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE transactions on Signal Processing, 1997, 45(11): 2673-2681. [19] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 770-778. [20] XUE W, ZHONG P, ZHANG W, et al. Sample-based online learning for bi-regular hinge loss[J]. International Journal of Machine Learning and Cybernetics, 2021, 12: 1753-1768. [21] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C] // Proceedings of Computer Vision-ECCV 2014. Zurich, Switzerland: Springer, 2014: 740-755. [22] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].(2014-12-22)[2023-03-18]. https://arxiv.org/abs/1412.6980. [23] QIAO T, ZHANG J, XU D, et al. MirrorGAN: learning text-to-image generation by redescription[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Changsha, China: IEEE Press, 2019: 1505-1514. |
[1] | LI Erchao, ZHANG Zhizhao. Online dynamic demand vehicle routing planning [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 62-73. |
[2] | YANG Jucheng, WEI Feng, LIN Liang, JIA Qingxiang, LIU Jianzheng. A research survey of driver drowsiness driving detection [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 1-12. |
[3] | XIAO Wei, ZHENG Gengsheng, CHEN Yujia. Named entity recognition method combined with self-training model [J]. Journal of Shandong University(Engineering Science), 2024, 54(2): 96-102. |
[4] | Gang HU, Lemeng WANG, Zhiyu LU, Qin WANG, Xiang XU. Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes [J]. Journal of Shandong University(Engineering Science), 2024, 54(1): 1-10. |
[5] | Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7. |
[6] | Yujiang FAN,Huanhuan HUANG,Jiaxiong DING,Kai LIAO,Binshan YU. Resilience evaluation system of the old community based on cloud model [J]. Journal of Shandong University(Engineering Science), 2023, 53(5): 1-9, 19. |
[7] | Ying LI,Jiankun WANG. The classification of mild cognitive impairment based on supervised graph regularization and information fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 65-73. |
[8] | YU Yixuan, YANG Geng, GENG Hua. Multimodal hierarchical keyframe extraction method for continuous combined motion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 42-50. |
[9] | ZHANG Hao, LI Ziling, LIU Tong, ZHANG Dawei, TAO Jianhua. A technology prediction model based on fuzzy Bayesian networks with sociological factors [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 23-33. |
[10] | WU Yanli, LIU Shuwei, HE Dongxiao, WANG Xiaobao, JIN Di. Poisson-gamma topic model of describing multiple underlying relationships [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 51-60. |
[11] | YU Mingjun, DIAO Hongjun, LING Xinghong. Online multi-object tracking method based on trajectory mask [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 61-69. |
[12] | HUANG Huajuan, CHENG Qian, WEI Xiuxi, YU Chuchu. Adaptive crow search algorithm with Jaya algorithm and Gaussian mutation [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 11-22. |
[13] | LIU Fangxu, WANG Jian, WEI Benzheng. Auxiliary diagnosis algorithm for pediatric pneumonia based on multi-spatial attention [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 135-142. |
[14] | LIU Xing, YANG Lu, HAO Fanchang. Finger vein image retrieval based on multi-feature fusion [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 118-126. |
[15] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
|