Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (3): 34-41.doi: 10.6040/j.issn.1672-3961.0.2021.603

Previous Articles    

Hierarchical dual attention network for breast multi-modality image classification

YANG Xiao1, XI Xiaoming1*, LI Weicui2, YANG Lu1   

  1. 1. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    2. Shandong Institute of Scientific and Technical Information, Jinan 250101, Shandong, China
  • Published:2022-06-23

CLC Number: 

  • TP391.4
[1] HARRIS J R, LIPPMAN M E, VERONESI U, et al. Breast cancer[J]. New England Journal of Medicine, 1992, 327(5): 319-328.
[2] CAO Wei, CHEN Hongda, YU Yiwen, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chinese Medical Journal, 2021, 134(7): 783-791.
[3] 付子文, 杨华.MRI 增强扫描联合 DWI 检测在乳腺癌诊断中的应用[J]. 影像科学与光化学, 2020, 38(3): 540-545. FU Ziwen, YANG Hua. Application of MRI enhanced scan combined with DWI detection in diagnosis of breast cancer[J]. Imaging Science and Photochemistry, 2020, 38(3): 540-545.
[4] 中华医学会放射学分会乳腺专业委员会专家组. 乳腺磁共振检查及诊断规范专家共识[J]. 肿瘤影像学,2018, 26(4): 241-249. Chinese Medical Association Radiology Subcommittee Expert Group of Breast Professional Committee. Expert consensus on breast magnetic resonance examination and diagnostic criteria[J]. Tumor Imaging, 2018, 26(4): 241-249.
[5] IANNETTI G, APKARIAN A V. fMRI and human pain perception[M]. New York, USA: Oxford University Press, 2018: 499-516.
[6] 汪国宴, 冯平勇, 宋振虎, 等. 磁共振全身弥散加权成像的研究进展[J]. 临床荟萃, 2011, 26(22): 2018-2021. WANG Guoyan, FENG Pingyong, SONG Zhenhu, et al.Research progress of whole-body diffusion weighted magnetic resonance imaging[J]. Clinical Focus, 2011, 26(22): 2018-2021.
[7] BOLLINENI V R, KRAMER G, LIU Y, et al. A literature review of the association between diffusion-weighted MRI derived apparent diffusion coefficient and tumour aggressiveness in pelvic cancer[J]. Cancer Treatment Reviews, 2015, 41(6):496-502.
[8] WANG Haifeng, ZHENG Bichen, YOON S W, et al. A support vector machine-based ensemble algorithm for breast cancer diagnosis[J]. European Journal of Operational Research, 2018, 267(2): 687-699.
[9] KOSTOPOULOS S, SIDIROPOULOS K, GLOTSOS D, et al. Multimodality imaging and state-of-art GPU technology in discriminating benign from malignant breast lesions on real time decision support system[C] //Journal of Physics: Conference Series. Bristol, UK:IOP Publishing, 2014, 490(1): 012137.
[10] RAGAB D A, SHARKAS M, ATTALLAH O. Breast cancer diagnosis using an efficient CAD system based on multiple classifiers[J]. Diagnostics, 2019, 9(4): 165.
[11] CONCEICAO R C, CAPOTE R M, OLIVEIRA B L, et al. Imaging and classification of breast cancer with multimodal PEM-UWB techniques[C] //2013 International Conference on Electromagnetics in Advanced Applications(ICEAA). Piscataway, USA: IEEE Press, 2013: 421-424.
[12] LESNIAK J M, SCHIE G, TANNER C, et al. Multimodal classification of breast masses in mammography and MRI using unimodal feature selection and decision fusion[C] //International Workshop on Digital Mammography. Heidelberg, Germany: Springer-Verlag Press, 2012: 88-95.
[13] ZU Chen, JIE Biao, CHEN Songcan, et al. Label-alignment-based multi-task feature selection for multimodal classification of brain disease[C] //Machine Learning and Interpretation in Neuroimaging.Cham, Switzerland: Springer International Publishing, 2013: 51-59.
[14] MHIRI I, NEBLI A, MAHJOUB M A, et al. Non-isomorphic inter-modality graph alignment and synthesis for holistic brain mapping[C] //International Conference on Information Processing in Medical Imaging. Cham, Switzerland: Springer International Publishing, 2021: 203-215.
[15] RUECKERT D, ALJABAR P. Nonrigid registration of medical images: theory, methods, and applications [applications corner] [J]. IEEE Signal Processing Magazine, 2010, 27(4): 113-119.
[16] YALCIN A, REKIK I. A diagnostic unified classification model for classifying multi-sized and multi-modal brain graphs using graph alignment[J]. Journal of Neuroscience Methods, 2021, 348: 109014.
[17] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C] //International Conference on Medical Image Computing and Computer-assisted Intervention. Cham, Switzerland: Springer International Publishing, 2015: 234-241.
[18] FAN Fanda, HUANG Yunyou, WANG Lei, et al. A semantic-based medical image fusion approach[J/OL].(2019-12-11)[2022-03-16].
[19] SIMONYAN K, ZISSERMAN A. Very deep convol-utional networks for large-scale image recognition[J/OL].(2015-04-10)[2022-03-16].
[20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE Press, 2016: 770-778.
[21] HUANG Gao, LIU Zhuang, MAATEN L, et al. Densely connected convolutional networks[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA:IEEE Press, 2017: 4700-4708.
[22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
[23] ZHANG Li, XIANG Tao, GONG Shaogang. Learning a deep embedding model for zero-shot learning[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE Press, 2017: 2021-2030.
[24] LIU Xingbo, NIE Xiushan, TENG Junya, et al. Single-shot semantic matching network for moment localization in videos[J]. ACM Transactions on Multimedia Computing, Communications, and Applications(TOMM), 2021, 17(3): 1-14.
[25] ZHANG Yu, LIU Yu, SUN Peng, et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118.
[1] Ye LIANG,Nan MA,Hongzhe LIU. Image-dependent fusion method for saliency maps [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 1-7.
[2] Fengyu ZHOU,Panlong GU,Fang WAN,Lei YIN,Jiakai HE. Overview of multi-motion vision odometer [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 1-10.
[3] Baocheng LIU,Yan PIAO,Xuemei SONG. Adaptive fusion target tracking based on joint detection [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 51-57.
[4] Shengnan ZHANG,Lei WANG,Chunhong CHANG,Benli HAO. Image denoising based on 3D shearlet transform and BM4D [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 83-90.
[5] Yuenan ZHAO,Guiyou CHEN,Chen SUN,Ning LU,Liwei LIAO. Risk assessment method based on spatial hidden danger distribution and motion intention analysis [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 28-34.
[6] Yuanxi YAO. Analysis of wind power convergence trend quantitation based on sub-scene reconstruction [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 86-92.
[7] Jiachen WANG,Xianghong TANG,Jianguang LU. Research onfeature selection technology in bearing fault diagnosis [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 80-87, 95.
[8] Shiguang LIU,Hairong WANG,Jin LIU. Fast 4-points congruent sets for coarse registration of 3D point cloud [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 1-7.
[9] Jun FAN,Qiaolin YE,Ning YE. Face recognition based on improved prameter-free supervised localitypreserving projections [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 10-16.
[10] Guoxin WANG,Fengdong CHEN,Guodong LIU. Feature extraction method of color pseudo-random coded structured light [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 55-60.
[11] DOU Tingting, YAO Yuanxi, CHEN Peng, LU Deng. Arc modeling and practical simulation application based on ATP-EMTP [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 102-108.
[12] ZHANG Xianhong, ZHANG Chunrui. Image enhancement algorithm based on six dimensional feedforward neural network model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 10-19.
[13] DING Xiaoling, ZHAO Qiang, LI Yibin, MA Xin. Modified target recognition algorithm based on template matching [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 1-7.
[14] ZHAO Ye, HE Xiao, ZHOU Donghua. On least squares fault estimation with incorrect measurement noise statistics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 254-262.
[15] LIU Yan, LI Youjun, CHEN Meng. Research on the classification of resting state EEG signal between depression patients and normal controls by EMD and SVM methods [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 21-26.
Full text



No Suggested Reading articles found!