Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (4): 43-53.doi: 10.6040/j.issn.1672-3961.0.2021.125

• Civil Engineering • Previous Articles     Next Articles

Distribution law and calculation method of earth pressure in culvert under reinforced embankment

Xiuguang SONG1(),Yimin ZHAO1,2,Hongbo ZHANG1,*(),Zhenyu YANG1,Qiang YANG3   

  1. 1. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
    2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China
    3. Jinan Jinqu Road Survey Design Research Co., Ltd., Jinan 250021, Shandong, China
  • Received:2021-03-24 Online:2021-08-20 Published:2021-08-18
  • Contact: Hongbo ZHANG E-mail:songxiuguang@sdu.edu.cn;zhanghongbo@sdu.edu.cn

Abstract:

Based on the scale model test, the difference settlement between the embankment and the culvert was simulated by changing the foundation compression modulus on both sides of the culvert to reveal the mechanism of reinforcement and subsidence reduction on the culvert roof, determine the distribution law of earth pressure on the culvert roof under the condition of embankment overloading, and deduce and establish the calculation formula of earth pressure.The results showed that the soil pressure at the top of the reinforced embankment was obviously higher than that of the ordinary embankment under the same foundation modulus. The embankment-culvert relative displacement decreased with the increase of the number of grid layers.Under the same reinforcement condition, the smaller the foundation compression modulus was, the higher the embankment-culvert relative displacement and the soil pressure on the culvert top would be.Combined with the soil arching effect and the mechanism of reinforcement and subsidence reduction, the calculation formula of earth pressure under the roof of reinforced embankment was established, and the reliability was verified with the model test results.

Key words: rigid culvert, reinforced embankment, laboratory model test, soil pressure

CLC Number: 

  • TU443

Fig.1

Schematic diagram of model device"

Fig.2

Physical image of model device"

Fig.3

Gradation curve of sand particles"

Table 1

Basic geotechnical parameters of test sand"

D10/mm D30/mm D50/mm D60/mm Cu Cc ρdmax/(g·cm-3) ρdmin/(g·cm-3)
0.16 0.31 0.41 0.46 2.83 1.28 1.72 1.42

Fig.4

The strength curve of direct shear test with sand"

Table 2

Technical indicators of geogrid"

单位长度纵向拉伸屈服强度/(kN·m-1)单位长度横向拉伸屈服强度/(kN·m-1)纵向屈服伸长率/%纵向屈服伸长率/%网孔面积/mm2
25.2 55 25.2 12 1400

Table 3

Parameters of test conditions"

工况 格栅层数 海绵类型
1 0
2 0
3 1 55D海绵
4 2
5 0
6 1 45D海绵
7 2
8 0
9 1 25D海绵
10 2

Fig.5

Vertical pressure distribution diagram of cross section under overburden load"

Fig.6

Schematic diagram of the difference in fill settlement"

Fig.7

The distribution law of earth pressure of 55D sponge"

Fig.8

The distribution law of earth pressure of 45D sponge"

Fig.9

The distribution law of earth pressure of 25D sponge"

Fig.10

Relationship between the average earth pressure above the culvert and the height of the fill when the number of different geogrid layers"

Fig.11

Relationship between the earth pressure above the culvert and the height of the fill when the different foundation modulus"

Fig.12

The relationship between the fill settlement and the fill load when the compression modulus of the different foundation"

Fig.13

Force analysis diagram of unit body"

1 SONG Dingbao , CHEN Baoguo , KHAN A . Analytical solution of the vertical earth pressure on load-shedding culvert under high fill[J]. Computers and Geotechnics, 2020, 122, 103495.
doi: 10.1016/j.compgeo.2020.103495
2 邓谦. 山区公路涵洞受力特性及加筋减载计算研究[D]. 武汉: 湖北工业大学, 2019.
DENG Qian. Study on the stress characteristics of highway culvert and calculation of reinforcement load reduction in mountain areas[D]. Wuhan: Hubei University of Technology, 2019.
3 宋丁豹, 蒲诃夫, 陈保国, 等. 高填方减载式刚性涵洞受力特性模型试验研究[J]. 岩土力学, 2020, 41 (3): 823- 830.
SONG Dingbao , PU KHOV , CHEN Baoguo , et al. Earth pressure calculation method of rigid culverts under load reduction condition[J]. Rock and Soil Mechanics, 2020, 41 (3): 823- 830.
4 谢永利, 冯忠居, 李少杰, 等. 基于沉降控制的高路堤涵洞纵向调荷技术[J]. 岩土工程学报, 2019, 41 (10): 1790- 1799.
XIE Yongli , FENG Zhongju , LI Shaojie , et al. Longitudinal load adjustment technology for high embankment culverts based on settlement control[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (10): 1790- 1799.
5 张业勤, 陈保国, 孟庆达, 等. 减载条件下高填方涵洞受力机制及基底压力[J]. 岩土力学, 2019, 40 (12): 4813- 4818.
ZHANG Yeqin , CHEN Baoguo , MENG Qingda , et al. Earth pressure calculation method of rigid culverts under load reduction condition[J]. Rock and Soil Mechanics, 2019, 40 (12): 4813- 4818.
6 MA Qiang , KU Zhun , XIAO Henglin . Model tests of earth pressure on buried rigid pipes and flexible pipes underneath expanded polystyrene (EPS)[J]. Advances in Civil Engineering, 2019, 13
7 陈保国, 宋丁豹, 焦俊杰, 等. 减载条件下高填方涵洞垂直土压力研究[J]. 华中科技大学学报(自然科学版), 2015, 43 (10): 112- 116.
CHEN Baoguo , SONG Dingbao , JIAO JunJie , et al. Vertical earth pressure on high fill culverts under load reduction condition[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2015, 43 (10): 112- 116.
8 陈保国, 宋丁豹, 王云辉, 等. 减载式刚性涵洞减载机理与受力特性研究[J]. 华中科技大学学报(自然科学版), 2016, 44 (4): 79- 84.
CHEN Baoguo , SONG Dingbao , WANG Yunhui , et al. Load reduction mechanism and stress characteristics of load-shedding culvert under high fill[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44 (4): 79- 84.
9 杨锡武, 张永兴. 山区公路高填方涵洞的成拱效应及土压力计算理论研究[J]. 岩石力学与工程学报, 2005, (21): 89- 95.
YANG Xiwu , ZHANG Yongxing . Study on arch action and earth pressure theory for culverts under high embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, (21): 89- 95.
10 李盛, 卓彬, 王起才, 等. 高填方黄土明洞顶EPS板和土工格栅共同减载计算及土拱效应分析[J]. 中国铁道科学, 2018, 39 (1): 16- 22.
doi: 10.3969/j.issn.1001-4632.2018.01.03
LI Sheng , ZHUO Bin , WANG Qicai , et al. Load reduction calculation and soil arch effect analysis for high fIll open cut tunnel in loess area under joint action of EPS and reogrid[J]. China Railway Science, 2018, 39 (1): 16- 22.
doi: 10.3969/j.issn.1001-4632.2018.01.03
11 马强, 郑俊杰, 张军. 高填方涵洞加筋减载的现场试验研究[J]. 岩土力学, 2012, 33 (8): 2337- 2342.
doi: 10.3969/j.issn.1000-7598.2012.08.016
MA Qiang , ZHENG Junjie , ZHANG Jun . Experimental study of high embankment culvert treated by imperfect ditch covered with a geogrid layer[J]. Rock and Soil Mechanics, 2012, 33 (8): 2337- 2342.
doi: 10.3969/j.issn.1000-7598.2012.08.016
12 杨锡武. 山区公路高填方涵洞土压力理论及加筋减载研究[D]. 重庆: 重庆大学, 2004.
YANG Xiwu. Research on the earth pressure theory and reinforcement load reduction for the culverts beneath high fill[D]. Chongqing: Chongqing University, 2004.
13 MARSTON A , ANDERSON A O . The theory of loads on pipe in ditches and tests of cement and clay drain tile and sewer pipe[J]. Iowa, USA: Iowa State College of Agriculture and Mechanic Arts, 1913,
14 CHEN Baoguo , ZHENG Junjie , HAN Jie . Experimental study and numerical simulation on concrete box culverts in trenches[J]. Journal of Performance of Constructed Facilities, 2010, 24 (3): 223- 234.
doi: 10.1061/(ASCE)CF.1943-5509.0000098
15 HAN Jie , WANG Fei , Al-NADDAF M , et al. Progressive development of two-dimensional soil arching with displacement[J]. International Journal of Geom-echanics, 2017, 17 (12): 04017112.
doi: 10.1061/(ASCE)GM.1943-5622.0001025
16 AHMED M R , TRAN V D H , MEGUID M A . On the role of geogrid reinforcement in reducing earth pressure on buried pipes: experimental and numerical inve-stigations[J]. Soils and Foundations, 2015, 55 (3): 588- 599.
doi: 10.1016/j.sandf.2015.04.010
17 COREY R , HAN Jie , KHATRI D K , et al. Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140 (6): 04014019.
doi: 10.1061/(ASCE)GT.1943-5606.0001113
18 Al-NADDAF M , HAN Jie , XU Chao , et al. Effect of geofoam on vertical stress distribution on buried structures subjected to static and cyclic footing loads[J]. Journal of Pipeline Systems Engineering and Practice, 2019, 10 (1): 04018027.
doi: 10.1061/(ASCE)PS.1949-1204.0000355
19 BARTLETT S F , LINGWALL B N , Vaslestad J . Methods of protecting buried pipelines and culverts in transportation infrastructure using EPS geofoam[J]. Geotextiles and Geomembranes, 2015, 43 (5): 450- 461.
doi: 10.1016/j.geotexmem.2015.04.019
20 SANJAY Kumar Shukla , ASCE M . Load coefficient for ditch conduits covered with geosynthetic-reinforced granular backfill[J]. International Journal of Geomechanics, 2013, 13 (1): 76- 82.
doi: 10.1061/(ASCE)GM.1943-5622.0000181
21 HANDY R L . Anatomy of an error[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130 (7): 768- 771.
doi: 10.1061/(ASCE)1090-0241(2004)130:7(768)
22 HANDY R L . Geotechnical engineering: soil and foundation principles and practice[M]. New York, USA: McGraw-Hill Education, 2007.
23 GIROUD J P . Determination of geosynthetic strain due to deflection[J]. Geosynthetics International, 1995, 2 (3): 635- 641.
doi: 10.1680/gein.2.0028
24 SHUKLA S , GANRAV , SIVAKUGAN N . A simplified extension of the conventional theory of arching in soils[J]. International Journal of Geotechnical Engineering, 2009, 3 (3): 353- 359.
doi: 10.3328/IJGE.2009.03.03.353-359
25 SHUKLA S K , SIVAGUKAN N . A general expression for geosynthetic strain due to deflection[J]. Geosynthetics International, 2009, 16 (5): 402- 407.
doi: 10.1680/gein.2009.16.5.402
[1] LI Lianxiang, LIU Bing, CHENG Xiaoyang. Soil pressure distribution behind the basement wall considering the permanent existence of foundation pit retaining piles [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 30-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[9] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[10] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .