Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (6): 82-91.doi: 10.6040/j.issn.1672-3961.0.2020.090

• Civil Engineering • Previous Articles     Next Articles

Optimal structure of pressure cast-situ-pile with spray-expanded frustum

Lianxiang LI1,2(),Hongxia XING1,2,Jinliang LI3,Hengli HUANG1,2,Lei WANG1,2   

  1. 1. Research Center of Foundation Pit and Deep Foundation Engineering, Shandong University, Jinan 250061, Shandong, China
    2. School of Civil and Hydraulic Engineering, Shandong University, Jinan 250061, Shandong, China
    3. Shandong Biteli Foundation Engineering Technology Corporation, Jining 272100, Shandong, China
  • Received:2020-04-07 Online:2020-12-20 Published:2020-12-15

Abstract:

According to the field test results of pressure cast-situ-pile with spray-expanded frustum, with the help of Abaqus to establish the numerical model of the experiment, the influence rule of expanded body with frustum (hereinafter referred to as frustum) on surrounding soil under vertical load was obtained. It was clarified that the soil mass had squeezing effect within the 2D~3D range (D is frustum's diameter) and it reached the limit at 0.5 m under the frustum. Stress relaxation occured in the upper soil of frustum, which reached the limit value at the top of the frustum, and of which the vertical influence range was extended by 1.25D and the horizontal influence range was 1.5D~2.5D. Revealed that the optimal spray angle for frustum expanding was 50°~55°, the optimum expanding ratio was 2~2.75, the optimal position was in the D~2D range of upper part of pile, and it was optimal when the fixed spray wing was 7~8 m below the pile top. The optimal construction model could increase the bearing capacity by 19%, therefore it was suggested to adopt the optimal structural pile type to further improve efficiency and promote application of the pile.

Key words: pressure cast-situ-pile with spray-expanded frustum, numerical model, law of influence, optimal construction

CLC Number: 

  • TU473

Fig.1

Drill nozzle"

Fig.2

The forming process of expansion body"

Fig.3

Expanded body with double-frustum"

Fig.4

Process chart"

Table 1

Construction process parameters table of expanded body"

土名称 扩出尺寸/mm 升降速度/(cm·min-1) 旋喷喷射压/MPa 气压/MPa 钻机转速/(r·min-1) 喷嘴层数 喷嘴个数 喷嘴直径/mm
黏性土 200 15 20 0.7 10~25 3 3×1(3×2) 2.4~2.8(2.0~2.4)
150 20 20
100 20 15
粉土 250 20 15
200 20 12
150 25 12
砂土 300 20 20
200 20 15
100 25 12

Fig.5

Wing plate and its parameter"

Fig.6

Field geological conditions and schematic diagram of test piles"

Table 2

Parameters of test piles"

桩号 桩长/m 桩径/mm 锥台直径/mm 侧翼板高度/m
SZ1 17.5 600 1 200 10
SZ2 18.0 600 1 200 全喷翼
SZ3 24.5 600 1 200 10
SZ4 24.5 600 1 200 全喷翼

Fig.7

Load-settlement curves of testl piles"

Table 3

Comparison of each test pile's bearing capacity"

桩型 桩长/m 单桩极限承载力/kN
SZ1 17.5 4 360
SZ2 18.0 3 750
SZ3 24.5 6 223
SZ4 24.5 7 696

Fig.8

Schematic diagram of test pile and soil grid"

Fig.9

Comparison between load-settlement curves of field and simulation"

Table 4

Parameters of Soil and pile shaft material"

土层名称 层厚/m Es/MPa E/MPa Er/MPa c/kPa φ/(°)
粉砂 2.00 12.00 96.0 未加强 12.0 12.0
粉质黏土 3.50 4.40 35.2 未加强 26.0 8.1
黏土 2.20 7.62 61.0 116 42.0 11.1
粉砂 1.40 20.00 160.0 316 12.0 34.0
粉质黏土 7.10 8.50 68.0 130 45.0 11.1
粉砂 1.50 30.00 240.0 469 15.0 34.0
粉质黏土 9.28 75.00 145.0 46 11.8
桩身 36 000.0
水泥土 1 500.0 200.0 30.0

Fig.10

Horizontal displacement increment of soil around the pile body"

Fig.11

Horizontal stress increment of soil around the pile body"

Fig.12

Horizontal displacement increment of soil at the lower surface of frustum"

Fig.13

Horizontal stress increment of soil at the lower surface of frustum"

Fig.14

Horizontal displacement increment of soil at the upper surface of frustum"

Fig.15

Horizontal stress increment of soil at the upper plate of surface of frustum"

Table 5

Parameters of soil and pileshaft material"

名称 变形模量E/MPa 黏聚力c/kPa 内摩擦角φ/(°)
桩侧土 82.7 14.4 32.1
桩端土 75.0 46.0 11.8
桩身 36 000.0
水泥土 1 500.0 200.0 30.0

Fig.16

Expansion angle of expanded body"

Fig.17

Comparison of bearing capacity of piles with different frustum angles"

Fig.18

Comparison of frustum expansion ratio"

Fig.19

Improving efficiency of bearing capacity of test pile under different diameter expansion ratio"

Fig.20

Position of frustum"

Fig.21

Influence curves of position change of frustum on bearing capacity"

Fig.22

Wing height's effect on bearing capacity"

Fig.23

Comparison of different models"

Table 6

Model parameter"

模型 桩长L/m 桩径d/mm 扩径D/mm 扩径比D/d 扩径角/(°) 锥台位置 喷翼高度
最优构造 15 600 1 500 2.5 55 桩端上2D 喷至桩顶下8 m
原模型 15 600 1 200 2.0 45 桩端 未喷翼

Fig.24

Comparison of Q-S curves of different models"

Fig.25

Load bearing ratioof side resistance"

Fig.26

Load bearing ratioof frustum"

Fig.27

Load bearing ratioof end resistance"

1 林天健. 现代异形桩及其力学特点的理论评述[J]. 力学与实践, 1998, 20 (5): 7- 11.
LIN Tianjian . Theoretical discussion on modern special form piles and their mechanical characteristics[J]. Mechanics and Engineering, 1998, 20 (5): 7- 11.
2 刘汉龙, 费康, 马晓辉, 等. 振动沉模大直径现浇薄壁管桩技术及其应用(Ⅰ):开发研制与设计[J]. 岩土力学, 2003, 24 (2): 164- 168.
LIU Hanlong , FEI Kang , MA Xiaohui , et al. Cast-in-situ concrete thin-wall pipe pile with vibrated and steel tube mould technology and its application development and design[J]. Rock and Soil Mechanics, 2003, 24 (2): 164- 168.
3 SO A K O , NG C W W . Performance of long-driven H-piles in granitic saprolite[J]. Journal of Geotechnical and Geoenvironmental Engineering:ASCE, 2009, 135 (2): 246- 258.
doi: 10.1061/(ASCE)1090-0241(2009)135:2(246)
4 丁选明, 孔纲强, 刘汉龙. 现浇X形桩桩-土荷载传递规律现场试验研究[J]. 岩土力学, 2012, 33 (2): 489- 493.
doi: 10.3969/j.issn.1000-7598.2012.02.027
DING Xuanming , KONG Gangqiang , LIU Hanlong . Field test study of pile-soil load transfer characteristics of X-shaped cast-in-place pile[J]. Rock and Soil Mechanics, 2012, 33 (2): 489- 493.
doi: 10.3969/j.issn.1000-7598.2012.02.027
5 徐立新, 杨少华, 段冰. 高速公路Y形桩软基处理试验研究[J]. 岩土工程学报, 2007, 29 (1): 120- 124.
XU Lixin , YANG Shaohua , DUAN Bing . Field tests on Y-shaped vibro piles to improve soft clay ground under the expressways[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (1): 120- 124.
6 高广运, 蒋建平, 顾宝和. 砂卵石层上大直径扩底桩墩竖向承载力性状[J]. 岩土力学, 2004, 25 (3): 359- 362.
doi: 10.3969/j.issn.1000-7598.2004.03.005
GAO Guangyun , JIANG Jianping , GU Baohe . Vertical bearing behavior large diameter short-belled pier in sand-cobble layer[J]. Rock and Soil Mechanics, 2004, 25 (3): 359- 362.
doi: 10.3969/j.issn.1000-7598.2004.03.005
7 张忠苗, 吴世明, 包风. 钻孔灌注桩桩底后注浆机理与应用研究[J]. 岩土工程学报, 1999, 21 (6): 681- 686.
ZHANG Zhongmiao , WU Shiming , BAO Feng . Study of mechanism and application on bored pile end grouting[J]. Chinese Journal of Geotechnical Engineering, 1999, 21 (6): 681- 686.
8 贺德新, 沈保汉. DX挤扩装置及DX多节挤扩桩的应用[J]. 工业建筑, 2001, 31 (1): 27- 31.
HE Dexin , SHEN Baohan . DX extruding device and DX pile with multi-under-extruding branches[J]. Industrial Construction, 2001, 31 (1): 27- 31.
9 周佳锦, 王奎华, 龚晓南. 静钻根植竹节桩承载力及荷载传递机制研究[J]. 岩土力学, 2014, 25 (5): 1367- 1376.
ZHOU Jiajin , WANG Kuihua , GONG Xiaonan . Bearing capacity and load transfer mechanism of static drill rooted nodular piles[J]. Rock and Soil Mechanics, 2014, 25 (5): 1367- 1376.
10 周佳锦, 龚晓南, 王奎华. 静钻根植竹节桩抗压承载性能[J]. 浙江大学学报(工学版), 2014, 48 (5): 835- 842.
ZHOU Jiajin , GONG Xiaonan , WANG Kuihua . Performance of static drill rooted nodular piles under compression[J]. Journal of Zhejiang University (Engineering Science), 2014, 48 (5): 835- 842.
11 周佳锦, 龚晓南, 王奎华. 静钻根植竹节桩传递机理模型试验[J]. 浙江大学学报(工学版), 2015, 49 (3): 531- 537.
ZHOU Jiajin , GONG Xiaonan , WANG Kuihua . Model test on load transfer mechanism of a static drill rooted nodular pile[J]. Journal of Zhejiang University (Engineering Science), 2015, 49 (3): 531- 537.
12 李金良.一种喷灌挤压组合桩: 中国, CN105297710A[P]. 2016-02-03.
13 中华人民共和国住房和城乡建设部.建筑基桩检测技术规范: JGJ 106—2014[S].北京: 中国建筑工业出版社, 2014.
14 赵春风, 于明章, 吴水根. 试桩未达破坏时单桩极限承载力的估算方法[J]. 同济大学学报, 1999, 27 (4): 474- 477.
ZHAO Chunfeng , YU Mingzhang , WU Shuigen . Method defining the bearing of single testing pile not reaching degree of failure[J]. Journal of Tongji University, 1999, 27 (4): 474- 477.
15 杨淼, 张忠苗, 刘念武. 新型螺旋成孔根植注浆竹节管桩抗压性状数值模拟研究[J]. 岩土力学, 2013, 34 (7): 2119- 2126.
YANG Miao , ZHANG Zhongmiao , LIU Nianwu . Numerical simulation of compressive mechanical characters of new bored grouting PHC nodular pile[J]. Rock and Soil Mechanics, 2013, 34 (7): 2119- 2126.
16 李连祥, 刘嘉典, 李克金. 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 2019, 40 (7): 4021- 4029.
LI Lianxiang , LIU Jiadian , LI Kejin . Study of parameters selection and applicability of HSS model in typical stratum of Jinan[J]. Rock and Soil Mechanics, 2019, 40 (7): 4021- 4029.
17 李先军.多节钻扩灌注桩最优构造与竖向承载力理论研究[D].济南: 山东大学, 2017.
LI Xianjun. Research on Structure Optimization and Vertival Bearing Capacity Theory for the Multi-nodes Drilled Expanded Bored Pile[D]. Jinan: Shandong University, 2017.
18 钱永梅, 孙占珩, 金玉杰. 混凝土扩盘桩盘截面形式对桩周土破坏影响的试验研究[J]. 工业建筑, 2014, 48 (11): 127- 130.
QIAN Yongmei , SUN Zhanhang , JIN Yujie . Experimental research on the influence of the plate section form of concrete expanded-plate pile on the failure state of the soil around pile[J]. Industrial Construction, 2014, 48 (11): 127- 130.
19 陈轮, 常冬冬, 李广信. DX桩单桩承载力的有限元分析[J]. 工程力学, 2002, 19 (6): 67- 72.
CHEN Lun , CHANG Dongdong , LI Guangxin . Finite element analysis of bearing capacity of DX pile single pile[J]. Engineering Mechanics, 2002, 19 (6): 67- 72.
[1] ZHANG Dun,HOU Jing-ming,LIU Han-sheng,XU Gen-hai . Experimental and numerical modeling for the location of abucket aerator on an arch structure [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 101-105 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] HAN Xue. Example analysis for landslide hazard remote monitoring at  the Pingzhuang west open-pit mine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 116 -120 .
[4] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[5] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[6] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[7] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[8] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[9] LI Hui-ping, ZHAO Guo-qun, ZHANG Lei, HE Lian-fang. The development status of hot stamping and quenching of ultra high-strength steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 69 -74 .
[10] ZHANG Ai-juan. Synthesis of bone-like hydroxyapatite in simulated body fluid[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 86 -90 .