Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (5): 52-57.doi: 10.6040/j.issn.1672-3961.0.2019.154

• Energy and Power Engineering—Special Topic on Refrigeration Technology • Previous Articles     Next Articles

TRCC series system based on LNG cold energy and fuel cellwaste heat utilization

Yinglun GUO1(),Fuqiang XI2,Ruizhi SU1,Guoxiang LI1,Zeting YU1,*()   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Weichai Power Co. Ltd., Weifang 261061, Shandong, China
  • Received:2019-04-02 Online:2019-10-20 Published:2019-10-18
  • Contact: Zeting YU E-mail:yinglun0408@163.com;yuzt@sdu.edu.cn
  • Supported by:
    国家重点研发计划项目(面向重型载货车用燃料电池发动机集成与控制)

Abstract:

A cogeneration system based on solid oxide fuel cell (SOFC for short) and transcritical carbon dioxide cycle (TRCC for short) was proposed. The transcritial carbon dioxide cycle was used to recover the exhaust heat of the SOFC while utilizing the LNG refrigeration capacity. The mathematical model of the system was established, and the influence of parameter changes on system performance was analyzed. The results showed that under the design conditions, the thermal efficiencies of SOFC, TRCC, and the whole system were 64.2%, 22.4%, and 74.1%, respectively. The system thermal efficiency increased with the inlet temperature of the fuel cell and decreased with the increase of the steam-carbon ratio. The thermal efficiency increased as the turbine inlet pressure to the TRCC increased.

Key words: solid oxide fuel cell, transcritical carbon dioxide cycle, thermal efficiency, LNG exergy

CLC Number: 

  • TM911

Fig.1

Schematic process flow diagram of the wasteheat drive system"

Table 1

Assumed input parameters for simulation"

参数 取值
环境温度/℃ 25
环境压力/kPa 101.3
水碳比 2.5
燃料电池入口温度/℃ 500
电池数 5 000
透平等熵效率 0.8
泵等熵效率 0.8
燃料利用率 0.85
换热器热端端差温度/℃ 30
TRCC循环低压/kPa 4 000
TRCC循环高压/kPa 20 000
LNG输入质量流量/(kg/s) 100
LNG初始温度/℃ -161.5
LNG初始压力/kPa 101.3
LNG泵出口压力/kPa 6 000

Table 2

Results of simulation for the combined cycle"

参数点 压力/kPa 温度/℃
1 101.3 25.0
2 800.0 221.7
3 101.3 25.0
4 800.0 217.8
5 101.3 25.0
6 800.0 25.1
7 800.0 241.7
8 800.0 281.5
9 800.0 255.9
10 800.0 500.0
11 800.0 650.0
12 800.0 650.0
13 800.0 809.6
14 101.3 462.5
15 101.3 295.7
16 101.3 294.0
17 101.3 282.5
18 101.3 100.0
19 20 000.0 252.5
20 4 000.0 120.2
21 4 000.0 37.6
22 4 000.0 5.3
23 20 000.0 20.5
24 20 000.0 61.3
25 101.4 -161.5
26 6 000.0 -160.0
27 6 000.0 129.7
28 6 000.0 25.0
29 4 000.0 -17.9
30 4 000.0 5.3

Table 3

Performance of the combined cycle"

参数 计算值
燃料压缩机耗功/kW 3 999.0
空气压缩机耗功/kW 209 412.0
燃气轮机输出功/kW 300 030.0
SOFC泵耗功/kW 2.3
CO2透平输出功/kW 41 202.0
CO2泵耗功/kW 9 166.0
LNG泵耗功/kW 1 391.0
LNG膨胀机输出功/kW 8 811.0
系统净输出功/kW 294 537.0
SOFC热效率 0.642
CO2循环热效率 0.224
系统热效率 0.741

Fig.2

Effect of inlet temperature on the SOFC system"

Fig.3

Effect of fuel cell steam-to-carbon ratio on the system performances"

Fig.4

Effect of TRCC high pressure on the series system"

1 JEONG K S , OH B S . Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle[J]. Journal of Power Sources, 2002, 105 (1): 58- 65.
doi: 10.1016/S0378-7753(01)00965-X
2 ROKNI , MASOUD . Thermodynamic analysis of SOFC (solid oxide fuel cell): stirling hybrid plants using alternative fuels[J]. Energy, 2013, 61, 87- 97.
doi: 10.1016/j.energy.2013.06.001
3 DICKS A , RAND D A J . Fuel cell systems explained[M]. New York, USA: Wiley, 2000.
4 WANG Jiangfeng , YAN Zheyuan , MA Shaolin , et al. Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37 (3): 2535- 2545.
doi: 10.1016/j.ijhydene.2011.10.079
5 ARSALIS A . Thermoeconomic modeling and parametric study of hybrid SOFC—gas turbine—steam turbine power plants ranging from 1.5 to 10 MWe[J]. Journal of Power Sources, 2008, 181 (2): 313- 326.
doi: 10.1016/j.jpowsour.2007.11.104
6 AKKAYA A V , SAHIN B , ERDEM H H . An analysis of SOFC/GT CHP system based on exergetic performance criteria[J]. International Journal of Hydrogen Energy, 2008, 33 (10): 2566- 2577.
doi: 10.1016/j.ijhydene.2008.03.013
7 SONG C . Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today, 2002, 77 (1): 17- 49.
8 ZHANG Shiqi , LIU Haolun , LIU Meili , et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121, 314- 324.
doi: 10.1016/j.applthermaleng.2017.04.066
9 RANJBAR F , CHITSAZ A , MAHMOUDI S M S , et al. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell[J]. Energy Conversion and Management, 2014, 87, 318- 327.
doi: 10.1016/j.enconman.2014.07.014
10 SANCHEZ D , ESCALONA J M M D , CHACARTEGUI R , et al. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology[J]. Journal of Power Sources, 2011, 196 (9): 4347- 4354.
doi: 10.1016/j.jpowsour.2010.09.091
11 WALNUM H T , NEKS P , NORD L O , et al. Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions[J]. Energy, 2013, 59, 513- 520.
doi: 10.1016/j.energy.2013.06.071
12 郑开云. 超临界二氧化碳循环热电联产系统初步研究[J]. 分布式能源, 2017, 2 (3): 15- 19.
ZHENG Kaiyun . Preliminary investigation on supercritical carbon dioxide cycle cogeneration system[J]. Distributed Energy, 2017, 2 (3): 15- 19.
13 YAMAGUCHI H , ZHANG X R , FUJIMA K , et al. Solar energy powered rankine cycle using supercritical CO2[J]. Applied Thermal Engineering, 2006, 26 (17-18): 2345- 2354.
doi: 10.1016/j.applthermaleng.2006.02.029
14 DUAN Chengjie , WANG Jie , YANG Xiao-Yong . Features of supercritical carbon dioxide brayton cycle coupled with reactor[J]. Atomic Energy Science & Technology, 2010, 44 (11): 1341- 1348.
15 CHAN S H , LOW C F , DING O L . Energy and exergy analysis of simple solid-oxide fuel-cell power systems[J]. Journal of Power Sources, 2002, 103 (2): 188- 200.
doi: 10.1016/S0378-7753(01)00842-4
16 CHAN S H , HO H K , TIAN Y . Multi-level modeling of SOFC—gas turbine hybrid system[J]. International Journal of Hydrogen Energy, 2003, 28 (8): 889- 900.
doi: 10.1016/S0360-3199(02)00160-X
17 钟芬, 吴竺, 朱彤. 低温余热驱动的热电复合系统优化设计[J]. 中国电机工程学报, 2016, 36 (12): 3176- 3183.
ZHONG Fen , WU Zhu , ZHU Tong . Optimization design of a combined organic rankine cycle-heat pump system driven by low-grade waste heat[J]. Proceedings of the CSEE, 2016, 36 (12): 3176- 3183.
18 冯兴强.固体氧化物燃料电池系统数学建模[D].上海:上海交通大学, 2009.
FENG Xingqiang. Numerical simulation Jiaotong of solid oxide fuel cell system[D]. Shanghai: Shanghai Jiao Tong University, 2009.
19 贾俊曦.固体氧化物燃料电池传热传质模型研究[D].大连:大连理工大学, 2006.
JIA Junxi. Study of model for heat and mass transfer in solid oxide fuel cell[D]. Dalian: Dalian University of Technology, 2006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[2] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[3] XU Xiaodan, DUAN Zhengjie, CHEN Zhongyu. The sentiment mining method based on extended sentiment dictionary and integrated features[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 15 -18 .
[4] CHOU Wu-Sheng, WANG Shuo. Study on the adaptive algorithm of the force reflection robotic master under large stiffness of the environment[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 1 -5 .
[5] RU Miao-yan,WANG Ming-gang,LU Cheng-xue,ZHANG Hong-lin . A microcalorimetric study of the optimum temperature of astarch enzymatic catalyzed reaction[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 113 -115 .
[6] BI Xia-fei,SUN Tong-jing,YANG Fu-gang,ZHANG Wei . Research on a noncontact parallel continuous square billet online definitelength cutting system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 52 -55 .
[7] JIA Xiu-qin,LIU Yun-gang . Observer design for a class of more general Lipschitz nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(2): 113 -120 .
[8] REN Xiao-Hua, CUI Zhao-Jie. Study on extracting/ reverse extracting dephenol of gasified high-concentration phenol-containing wastewater[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 93 -97 .
[9] LIN Ai-Hua, JIANG Xiao-Yun, MIAO Feng-Ming. The solution to the space fractional Schro¨dinger equationwith double δ potential[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 139 -143 .
[10] ZHAO Zhi-yan, LI Bo*. Research on a logistics distribution network location based on cost analysis[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 138 -142 .