Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 122-131.doi: 10.6040/j.issn.1672-3961.0.2018.237

• Others • Previous Articles     Next Articles

Motion control system design of multi-joint snake-like manipulator for nuclear environment

Qiang ZHANG()   

  1. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • Received:2018-06-06 Online:2018-12-20 Published:2018-12-26
  • Supported by:
    国家自然科学基金资助项目(61503361)

Abstract:

Based on the detection and maintenance work in the nuclear fusion reactor vessel as an example, a snake-like remote control manipulator with multi-joint series structure was presented, which adopted a composite control plan based on track push pull and adjustment with suspending arms. Aiming at the demand of the manipulator to carry out the whole vessel operation, the trajectory of the manipulator was simulated and analyzed. A motion control algorithm including path planning and trajectory control was designed, and a multi-axis coordination control system was established. The motion of the manipulator was tested inside the geometric simulation vessel environment, and the control accuracy of the joint rotation angle was evaluated. The gravity compensation module of the manipulator system was constructed, and the terminal positioning accuracy of the manipulator system was evaluated by the simulation of the flexible model. The test results verified the effectiveness of the motion control system.

Key words: nuclear fusion reactor vessel, snake-like manipulator, path planning, multi-axis coordinate control, control precision

CLC Number: 

  • TP242

Fig.1

Overall structure of the multi-joint snake-like manipulator system"

Fig.2

Motion freedom analysis and prototype display of the multi-joint snake-like manipulator system"

Fig.3

Simulation analysis diagram of the motion trajectory in the detection process of the manipulator"

Fig.4

Block diagram of the motion control system of the manipulator"

Fig.5

Flow chart of the motion control system of the manipulator"

Fig.6

Hardware and software interface of the manipulator motion control system"

Fig.7

Motion control experiment of the manipulator in the simulated EAST nuclear fusion vessel"

Fig.8

Scheme of the joint rotation angle measurement of the manipulator based on machine vision"

Table 1

Test results of control precision of the manipulator joint rotation"

(°)
关节序号 绝对角度 相对角度 转动刻度 顺/逆时针 θr
1 18.92 0
2 17.85 1.07 1 000 1.07
3 16.62 1.23 1 000 1.23
4 15.41 1.21 1 000 1.21
5 14.37 1.04 1 000 1.04
6 11.90 2.47 2 000 1.23
7 4.14 7.76 6 000 1.29
8 -3.80 7.94 6 000 1.32
9 11.38 15.18 12 000 1.27

Fig.9

Test curve of control precision of the manipulator joint rotation"

Fig.10

Position tracking curves of each joint of the manipulator"

Fig.11

Structure of the gravity compensation module of the manipulator"

Fig.12

Flexible models of the horizontal joint arm module, the gravity compensation module and the terminal joint arm module"

Fig.13

System flexible models of the multi-joint manipulator"

Fig.14

Transformation of the adjacent coordinate system of the manipulator"

Fig.15

Deformation diagrams of the multi-joint manipulator under typical positions"

Fig.16

Position error curves before and after the correction"

1 PAMPIN R , DAVIS A , IZQUIERDO J , et al. Developments and needs in nuclear analysis of fusion technology[J]. Fusion Engineering and Design, 2013, 88 (6): 454- 460.
2 CHOI C , TESINI A , SUBRAMANIAN R , et al. Multi-purpose deployer for ITER in-vessel maintenance[J]. Fusion Engineering and Design, 2015, 98 (10): 1448- 1452.
3 GARGIULO L , BAYETTI P , BRUNO V , et al. Operation of an ITER relevant inspection robot on Tore Supra tokamak[J]. Fusion Engineering and Design, 2009, 84 (6): 220- 223.
4 何强.面向托卡马克腔第一壁维护的遥操作机械臂机构设计及分析[D].上海:上海交通大学, 2013: 9-15.
HE Qiang. Mechanism design and analysis of teleoperated manipulator for the maintenance of Tokamak first wall[D]. Shanghai: Shanghai Jiao Tong University, 2013: 9-15.
5 肖锡臻.面向托卡马克维护的多视觉遥操作机器人环境感知技术研究[D].沈阳:中国科学院沈阳自动化研究所, 2015: 11-40.
XIAO Xizhen. Research on environmental perception for tele-operation maintenance of Tokamak using multi-vision approach[D]. Shenyang: Shenyang Institute of Automation Chinese Academy of Sciences, 2015: 11-40.
6 HAIST B , MILLS S , LOVING A . Remote handling preparations for JET EP2 shutdown[J]. Fusion Engineering and Design, 2009, 84 (6): 875- 879.
7 DAMIANI C , ANNINO C , BALAGUE S , et al. The European contribution to the ITER remote maintenance[J]. Fusion Engineering and Design, 2014, 89 (10): 2251- 2256.
8 LI Zhang, ZANG Xizhe, SUO Laichun, et al. Static analysis and modal analysis of heavy-load manipulator based on ANSYS[C]//Proc of ICMECT 2014. Zurich, Switzerland: Trans Tech Publications, 2014: 1059-1064.
9 ZHANG Qiang , ZHOU Ling , WANG Zengfu . Design and implementation of wormlike creeping mobile robot for EAST remote maintenance system[J]. Fusion Engineering and Design, 2017, 118, 81- 97.
doi: 10.1016/j.fusengdes.2017.03.054
10 张强, 吴宝元, 郭伟斌, 等. 面向核聚变舱探测的遥操纵蛇形机器人系统[J]. 华中科技大学学报(自然科学版), 2017, 45 (10): 43- 48.
ZHANG Qiang , WU Baoyuan , GUO Weibin , et al. Snake-like remote control robot system for inboard detection of nuclear fusion vessel[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45 (10): 43- 48.
11 武遵.适用于核聚变反应舱的多关节机械臂关键技术研究[D].合肥:中国科学技术大学, 2016: 35-37.
WU Zun. Study on key technology of multi-joint manipulator for vessel of fusion device[D]. Hefei: University of Science and Technology of China, 2016: 35-37.
12 王美玲.面向救援任务的双臂机器人协作运动规划与控制方法研究[D].合肥:中国科学技术大学, 2015: 65-85.
WANG Meiling. Research on cooperative motion planning and control of a redundant dual-arm robot for rescuing tasks[D]. Hefei: University of Science and Technology of China, 2015: 65-85.
13 张强.多关节核环境移动机器人平台的机构设计与实现[D].合肥:中国科学技术大学, 2017: 115-119.
ZHANG Qiang. Mechanism design and implementation of multi-joint mobile robot platform for nuclear environment[D]. Hefei: University of Science and Technology of China, 2017: 115-119.
14 徐文福, 强文义, 李成, 等. 自由漂浮空间机器人路径规划研究进展[J]. 哈尔滨工业大学学报, 2009, 41 (11): 1- 12.
doi: 10.3321/j.issn:0367-6234.2009.11.001
XU Wenfu , QIANG Wenyi , LI Cheng , et al. Research progress of path planning for free floating space robots[J]. Journal of Harbin Institute of Technology, 2009, 41 (11): 1- 12.
doi: 10.3321/j.issn:0367-6234.2009.11.001
15 ALI A A , RASHID A T , FRASCA M , et al. An algorithm for multi-robot collision-free navigation based on shortest distance[J]. Robotics and Autonomous Systems, 2016, 75 (1): 119- 128.
16 ZHANG Yong , GONG Dunwei , ZHANG Jianhua . Robot path planning in uncertain environment using multi-objective particle swarm optimization[J]. Neurocomputing, 2013, 103, 172- 185.
doi: 10.1016/j.neucom.2012.09.019
17 YANG Yang , SONG Yuntao , PAN Hongtao , et al. Visual servo simulation of EAST articulated maintenance arm robot[J]. Fusion Engineering and Design, 2016, 104, 28- 33.
doi: 10.1016/j.fusengdes.2016.01.024
18 PANFILOV P B , KOROLEV S V . Integration of 3D dynamic models being created by 3D machine vision system into telerobotics applications[J]. Automation and Remote Control, 2011, 72 (5): 1102- 1113.
doi: 10.1134/S0005117911050195
19 VIDILINA O V, VOROPAEVA N V. Reduction of flexible joint manipulator mathematical model[C]// Proc of MM-ITNT 2017. Nordrhein-Westfalen, Germany: CEUR-WS.org, 2017: 249-253.
20 王琨, 骆敏舟, 曹毅, 等. 基于多变量预测补偿的机械臂精度提升方法[J]. 电子测量与仪器学报, 2014, 28 (11): 1213- 1221.
WANG Kun , LUO Minzhou , CAO Yi , et al. Promoting method for manipulator accuracy based on multi-variable prediction and compensation[J]. Journal of Electronic Measurement and Instrument, 2014, 28 (11): 1213- 1221.
[1] YAN Xuan-hui, XIAO Guo-bao*. Path planning of a mobile robot based on fixed-length real number encoding mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 59-65.
[2] LIU Bin, ZHANG Ren-jin. A path planning method using two-stage particle swarm optimization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 12-18.
[3] CHEN Ming-zhi1, XU Chun-yao2, CHEN Jian2, YU Lun2. Path planning based on semantic information in virtual environment [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[2] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[3] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[4] HU Tian-liang,LI Peng,ZHANG Cheng-rui,ZUO Yi . Design of a QEP decode counter based on VHDL[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 10 -13 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[6] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[8] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[9] WANG Ru-gui,CAI Gan-wei . Sub-harmonic resonance analysis of 2-DOF controllable plane linkage mechanism electromechanical coupling system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 58 -63 .
[10] ZHAO Ke-Jun, WANG Xin-Jun, LIU Xiang, CHOU Yi-Hong. Algorithms of continuous top-k join query over structured overlay networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 32 -37 .