Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 132-136.doi: 10.6040/j.issn.1672-3961.0.2017.056

• Others • Previous Articles    

Polyaniline modified graphene layers/graphite plate electrode for supercapacitor

Xiaodan WANG(),Mingming GAO*()   

  1. School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, China
  • Received:2017-02-17 Online:2018-12-20 Published:2018-12-26
  • Contact: Mingming GAO E-mail:xdwang@mail.sdu.edu.cn;mmgao@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(51108250);山东省自然科学基金资助项目(ZR2015EM028);山东大学基本科研经费资助项目(2015JC017)

Abstract:

Polyaniline modified graphene layers/graphite plate (GL/GP/PANI) electrodes were prepared by electrochemical polymerization of aniline on graphene layers/graphite electrodes, which were obtained via in-situ formation of graphene layers on graphite plate by electrochemical exfoliation. The effect of polymerization cycle to specific capacitance of GL/GP/PANI was investigated. The surface features of the electrodes were characterized by SEM. The electrochemical performances of the electrodes were measured in 0.5 M H2SO4 electrolyte, including cyclic voltammetry, galvanostatic charge-discharge and electrochemical stability test. The results indicated that the PANI on the GL/GP electrodes had rodlike structure. At current density of 0.085 mA/cm2, the specific capacitance GL/GP/PANI reached 1 042.8 F/g. This study provided a new way to fabricate substrate electrode material for supercapacitor.

Key words: polyanline, graphene, electrochemical exfoliation, supercapacitor

CLC Number: 

  • O646.541

Fig.1

SEM image of GL/GP"

Fig.2

CV curves of electrochemical polymerization of PANI film with different cycles on GL/GP"

Fig.3

SEM image of GL/GP/PANI-5"

Fig.4

CV curves of GL/GP/PANI-5"

Fig.5

Galvanostatic charge-discharge curves of different electrodes"

Table 1

Discharge specific capacitance of PANI modified electrodes with different electrochemical polymerization cycles"

电极 面积比电容/
(mF·cm-2)
质量比电容/
(F·g-1)
GL/GP 37.09
GL/GP/PANI-5 145.99 1 042.8
GL/GP/PANI-10 169.76 1 041.4
GL/GP/PANI-15 193.53 744.8

Fig.6

Cycle life curve of GL/GP/PANI-5"

1 HONG W , WANG J , GONG P , et al. Rational construction of three dimensional hybrid Co3O4 @ NiMoO4 nanosheets array for energy storage application[J]. Journal of Power Sources, 2014, 270 (3): 516- 525.
2 LIU Y , PENG X . Recent advances of supercapacitors based on two-dimensional materials[J]. Applied Materials Today, 2017, (7): 1- 12.
3 ZHENG W , CHENG Q , WANG D , et al. High-performance solid-state on-chip supercapacitors based on Si nanowires coated with ruthenium oxide via atomic layer deposition[J]. Journal of Power Sources, 2017, 341, 1- 10.
doi: 10.1016/j.jpowsour.2016.11.093
4 ZHOU D , WANG H , MAO N , et al. High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte[J]. Microporous and Mesoporous Materials, 2017, 241, 202- 209.
doi: 10.1016/j.micromeso.2017.01.001
5 SNOOK G A , KAO P , BEST A S . Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196 (1): 1- 12.
doi: 10.1016/j.jpowsour.2010.06.084
6 ZHANG L L , LI S , ZHANG J , et al. Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline[J]. Chemistry of Materials, 2010, 22 (3): 1195- 1202.
doi: 10.1021/cm902685m
7 LI L , LIU E , LI J , et al. A doped activated carbon prepared from polyaniline for high performance supercapacitors[J]. Journal of Power Sources, 2010, 195 (5): 1516- 1521.
doi: 10.1016/j.jpowsour.2009.09.016
8 BÉLANGER D , REN X , DAVEY J , et al. Characterization and long-term performance of polyaniline-based electrochemical capacitors[J]. Journal of the Electrochemical Society, 2000, 147 (8): 2923- 2929.
doi: 10.1149/1.1393626
9 李晶, 赖延清, 李颉, 等. 导电聚苯胺电极材料在超级电容器中的应用及研究进展[J]. 材料导报, 2006, 20 (12): 20- 23.
doi: 10.3321/j.issn:1005-023X.2006.12.006
LI Jing , LAI Yanqing , LI Jie , et al. The application and research evolvement of the conductive polyaniline in the area of supercapacitor[J]. Materials Review, 2006, 20 (12): 20- 23.
doi: 10.3321/j.issn:1005-023X.2006.12.006
10 代涛娟, 王昱豪, 雷文, 等. 纳米结构坡缕石改性聚苯胺超级电容器电极材料的研究[J]. 武汉理工大学学报, 2013, 35 (9): 11- 15.
doi: 10.3963/j.issn.1671-4431.2013.09.003
DAI Taojuan , WANG Yihao , LEI Wen , et al. Nanostructured palygorskite modified polyaniline electrode materials for supercapacitors[J]. Journal of Wuhan University of Technology, 2013, 35 (9): 11- 15.
doi: 10.3963/j.issn.1671-4431.2013.09.003
11 徐惠, 李俊玲, 彭振军, 等. 聚苯胺的电化学制备及电容特性[J]. 高分子材料科学与工程, 2013, 29 (2): 9- 12.
XU Hui , LI Junling , PENG Zhenjun , et al. Electrochemical preparation and capacitance characteristics of polyaniline[J]. Polymeric Materials Science and Engineering, 2013, 29 (2): 9- 12.
12 FENG X M , LI R M , MA Y W , et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications[J]. Advanced Functional Materials, 2011, 21 (15): 2989- 2996.
doi: 10.1002/adfm.201100038
13 陈仲欣, 卢红斌. 石墨烯-聚苯胺杂化超级电容器电极材料[J]. 高等学校化学学报, 2013, 34 (9): 2020- 2033.
CHEN Zhongxin , LU Hongbin . Overview of graphene /polyaniline composite for high-performance supercapacitor[J]. Chemical Journal of Chinese Universities, 2013, 34 (9): 2020- 2033.
14 ZHU Y , MURALI S , CAI W , et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22 (35): 3906- 3924.
doi: 10.1002/adma.201001068
15 STANKOVICH S , DIKIN D A , DOMMETT G H , et al. Graphene-based composite materials[J]. Nature, 2006, 442 (7100): 282- 286.
doi: 10.1038/nature04969
16 GEORGAKILAS V , TIWARI J N , KEMP K C , et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications[J]. Chemical Reviews, 2016, 116 (9): 5464- 5519.
doi: 10.1021/acs.chemrev.5b00620
17 SALAVAGIONE H J . Promising alternative routes for graphene production and functionalization[J]. Journal of Materials Chemistry A, 2014, 2, 7138- 7146.
doi: 10.1039/C3TA15455F
18 GOPALAKRISHNAN K , SULTAN S , GOVINDARAJ A , et al. Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1.5N, MoS2 and WS2[J]. Nano Energy, 2015, 12, 52- 58.
doi: 10.1016/j.nanoen.2014.12.005
19 DIMIEV A M , TOUR J M . Mechanism of graphene oxide formation[J]. ACS Nano, 2014, 8 (3): 3060- 3068.
doi: 10.1021/nn500606a
20 BOUKHVALOV D W . Oxidation of a graphite surface: the role of water[J]. The Journal of Physical Chemistry C, 2014, 118 (47): 27594- 27598.
doi: 10.1021/jp509659p
21 PARVEZ K , WU Z S , LI R , et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. Journal of the American Chemical Society, 2014, 136 (16): 6083- 6091.
doi: 10.1021/ja5017156
22 ZHANG L , LIANG J , HUANG Y , et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation[J]. Carbon, 2009, 47 (14): 3365- 3368.
doi: 10.1016/j.carbon.2009.07.045
23 SINGH V V , GUPTA G , BATRA A , et al. Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application[J]. Advanced Functional Materials, 2012, 22 (11): 2352- 2362.
doi: 10.1002/adfm.v22.11
24 TANG J , CHEN S , YUAN Y , et al. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells[J]. Biosensors and Bioelectronics, 2015, 71, 387- 395.
doi: 10.1016/j.bios.2015.04.074
[1] WANG Mingyu, SU Liqing, ZHANG Shaojun, WANG Yu. Fe3O4 magnetic dispersive solid-phase extraction with graphene for determination of organochlorine pesticides contaminants in water [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 117-123.
[2] QI Zhen, YU Shu-yan, LIU Lu, WANG Shu-guang*. Kinetic and thermodynamic studies on the adsorption of tetracycline onto graphene [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(3): 63-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[2] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[3] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[4] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[5] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[6] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[7] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[9] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[10] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .