Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 1-7, 18.doi: 10.6040/j.issn.1672-3961.0.2018.205

• Machine Learning & Data Mining •     Next Articles

The diagnosis of Alzheimer's disease classification based on multi-scale residual neutral network

Zhenbing LIU1(),Xusheng FANG1,Huihua YANG1,2,Rushi LAN1   

  1. 1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, Guangxi, China
    2. School of Automation, Beijing University of Electronic Technology, Beijing 100876, China
  • Received:2018-05-31 Online:2018-12-20 Published:2018-12-26
  • Supported by:
    国家自然科学基金项目(61562013);国家自然科学基金项目(61866009);广西自然科学基金(2017GXNFDA198025)

Abstract:

A multi-scale resnet (MSResnet) method was proposed in this paper, which employed multi-scale convolution kernel to extract multi-scale information of structural magnetic resonance imaging MRI, and carried out residual learning for neural network, so as to avoid network degradation. After the gray scale standardization of MRI, the 99.41% classification precision was obtained by using the MSResnet model between Alzheimer's disease (AD) and normal control (NC), and the classification accuracy between AD and mild cognitive impairment (MCI) was 97.35%. Compared with the existing approaches, the algorithm proposed in this paper improved the classification accuracy significantly.

Key words: MSResnet, magnetic resonance imaging, Alzheimer's disease, gray scale standardization

CLC Number: 

  • TP399

Fig.1

Residual learning:a residual block"

Fig.2

Architecture MSResnet"

Fig.3

Multi-scale Residual learning block"

Table 1

The Architectures for MSResnet"

类型 卷积核 尺寸/步长 输出尺寸
卷积 64 7×7/2 112×112×64
最大池化 64 3×3/2 56×56×64
块1 64 Incep+Incep 56×56×64
块2 64 Incep+Incep 56×56×64
块3 128 3×3/2+Incep 28×28×128
块4 128 Incep+Incep 28×28×128
块5 256 3×3/2+Incep 14×14×256
块6 256 Incep+Incep 14×14×256
块7 512 3×3/2+Incep 7×7×512
块8 512 Incep+Incep 7×7×512
平均池化 512 7×7/1 1×1×512

Table 2

The demographic feature of dataset"

Subject AD MCI NC
Female/male 98/89 178/113 166/143
Age 76.90±6.15 75.26±7.74 76.71±6.79
MMSE ≤24 ≥24 ≥26
CDR ≥1.0 0.5~1.0 0

Fig.4

Gray scale transformation diagram"

Fig.5

Before and after image standardization"

Fig.6

Accuracy test and loss test for model"

Fig.7

Comparison of ROC curves for the model"

Table 3

The accuracy performance for each model"

%
模型 AD vs NC AD vs MCI MCI vs NC AD vs NC vs MCI
BA+Resnet 96.51 93.11 84.93 82.36
ST+Resnet 97.45 94.28 85.55 83.51
BA+MSResnet 98.32 95.15 86.70 83.87
ST+SVM 90.16 88.19 80.26 75.26
ST+ELM 91.35 86.46 81.79 77.07
ST+Alexnet 93.49 91.92 83.04 80.30
ST+VGG16 95.83 93.76 84.16 81.25
ST+GoogLenet 97.86 94.49 86.05 83.57
ST+MSResnet 99.41 97.35 87.75 85.53

Table 4

Comparison of accuracy, specificity and sensitive performance of MSResnet with the other technique"

%
模型 AD vs NC AD vs MCI MCI vs NC
准确率 敏感度 特异度 准确率 敏感度 特异度 准确率 敏感度 特异度
Alexnet[17] 96.14 93.57 100.00 90.52 85.11 94.20 84.80 88.02 80.62
VGG[16] 98.33 97.78 98.89 93.89 90.00 97.78 91.67 91.11 92.22
GoogLenet[15] 98.84
CNN[14] 93.08 94.92 92.67 86.30 88.46 84.55 83.30 80.99 85.55
DBN[20] 90.09 94.10 86.12 84.00 89.12 79.12 83.14 95.09 67.26
MSResnet 99.41 97.89 99.86 97.35 93.73 98.51 87.75 84.08 88.49
1 张柏雯, 林岚, 吴水才, 等. 深度学习在轻度认知障碍转化与分类中的应用分析[J]. 医疗卫生装备, 2017, 38 (9): 105- 111.
ZHANG Baiwen , LIN Lan , WU Shuicai , et al. Application of deep learning to mild cognitive impairment conversion and classification[J]. Chinese Medical Equipment Journal, 2017, 38 (9): 105- 111.
2 ORTIZ A , RRIZ J M , REZ J , et al. LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease[J]. Pattern Recognition Letters, 2013, 34 (14): 1725- 1733.
doi: 10.1016/j.patrec.2013.04.014
3 LIU F , SUK H I , WEE C Y , et al. High-order graph matching based feature selection for Alzheimer's disease identification[J]. Medical Image Computing and Computer-Assisted Intervention, 2013, 16 (2): 311- 318.
4 YANG J , PAN P , SONG W , et al. Voxelwise meta-analysis of gray matter anomalies in Alzheimer's disease and mild cognitive impairment using anatomic likelihood estimation[J]. Journal of the Neurological Sciences, 2012, 316 (1-2): 21- 29.
doi: 10.1016/j.jns.2012.02.010
5 李昕, 童隆正, 周晓霞, 等. 基于MR图像三维纹理特征的阿尔茨海默病和轻度认知障碍的分类[J]. 中国医学影像技术, 2011, 27 (5): 1047- 1051.
LI Xin , TONG Longzheng , ZHOU Xiaoxia , et al. Classification of 3D texture feature based on MRI image in discrimination of Alzheimer disease and mild cognitive impairment from normal controls[J]. Chinese Journal of Medical Imaging Technology, 2011, 27 (5): 1047- 1051.
6 何其佳, 刘振丙, 徐涛, 等. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47 (2): 86- 93.
HE Qijia , LIU Zhenbing , XU Tao , et al. MR image classification based on LBP and extreme learning machine[J]. Journal of Shandong University (Engineering Science), 2017, 47 (2): 86- 93.
7 LIU Z , XU T , MA C , et al. T-test based Alzheimer's disease diagnosis with multi-feature in MRIs[J]. Multimedia Tools & Applications, 2018, (2): 1- 17.
8 ZHANG D , WANG Y , ZHOU L , et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neuroimage, 2011, 55 (3): 856.
doi: 10.1016/j.neuroimage.2011.01.008
9 ZHU X , SUK H I , WANG L , et al. A novel relational regularization feature selection method for joint regression and classification in AD diagnosis[J]. Medical Image Analysis, 2015, 75 (6): 570- 577.
10 KRIZHEVSKY A , HINTON G E , SUTSKEVER I . ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25 (2): 2012.
11 SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-06-20].https://arxiv.org/pdf/1049.1556v6.pdf.
12 SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: 2015: 1-9.
13 HE K, ZHANG X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: 2016: 770-778.
14 LIU F, SHEN C. Learning deep convolutional features for MRI based Alzheimer's disease classification [EB/OL].[2017-04-30]. https://arXiv.org/pdf./:1404.3366v1.pdf.
15 SAMAN S, GHASSEM T. Deep AD: Alzheimer's disease classification via deep convolutional neural networks using MRI and FMRI[EB/OL].[2016-03-29]. https://arXiv.org/1603.08631v1.pdf.
16 BILLONES C D, DEMETRIA O J, HOSTALLERO D E, et al. DemNet: a convolutional neural network for the detection of alzheimer's disease and mild cognitive impairment[C]//Region 10 Conference(TENCON). Singapore: IEEE, 2016: 3724-3727.
17 吕鸿蒙, 赵地, 迟学斌. 基于增强AlexNet的深度学习的阿尔茨海默病的早期诊断[J]. 计算机科学, 2017, 44 (增刊1): 50- 60.
LYU Hongmeng , ZHAO Di , CHI Xuebin . Deep learning for early diagnosis of Alzheimer's disease based on intensive AlexNet[J]. Computer Science, 2017, 44 (Suppl.1): 50- 60.
18 LIN M, CHEN Q, YAN S. Network in network[EB/OL]. [2016-01-20]. http://arxiv.org/pdf/1312.-4000v3.pdf.
19 MADABHUSHI A , UDUPA J K , SOUZA A . Generalized scale: theory, algorithms, and application to image inhomogeneity correction[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2006, 101 (2): 100- 121.
20 ORTIZ A , MUNILLA J , GÓRRIZ J M , et al. Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease[J]. International Journal of Neural Systems, 2016, 26 (07): 1650025.
doi: 10.1142/S0129065716500258
[1] BAO Shu-zhe1,2, ZHU Yue-huan1, WANG Chun-li1*. Research on imagine attention of lowlevel features  based on fMRI [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 24-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[2] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[3] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[4] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[5] HU Tian-liang,LI Peng,ZHANG Cheng-rui,ZUO Yi . Design of a QEP decode counter based on VHDL[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 10 -13 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[7] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[9] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[10] WANG Ru-gui,CAI Gan-wei . Sub-harmonic resonance analysis of 2-DOF controllable plane linkage mechanism electromechanical coupling system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 58 -63 .