Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (5): 61-68.doi: 10.6040/j.issn.1672-3961.0.2018.031

• Machine Learning & Data Mining • Previous Articles     Next Articles

Finite-time flocking behavior of leader-following Cucker-Smale system

Youquan LIU(),Chenguang WANG,Hongjun SHI   

  1. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2018-01-14 Online:2018-10-01 Published:2018-01-14
  • Supported by:
    国家自然科学基金资助项目(61203055);中央高校基本科研业务费资助项目(2015XKMS076);国家级大学生创新创业训练计划资助项目(201710290058)

Abstract:

Based on the finite-time stability theory, the finite-time flocking behavior of leader-following Cucker-Smale systems was studied. By using Lyapunov function approach, sufficient conditions were provided to ensure the finite-time flocking. It was shown that the convergence time depended on the group size and the coupling strength between agents and the leader. The convergence time decreased with the increasing of the group size and the coupling strength. The state trajectories of velocity and velocity error were provided to confirm the theoretical results with simulation examples.

Key words: flocking, finite time, leader-following, Cucker-Smale system

CLC Number: 

  • TP273

Fig.1

The state trajectories of agent′s velocities and velocities error"

Fig.2

The convergence time of leader-following C-S system affected by the group size N"

Fig.3

The convergence time of leader-following C-S system affected by the coupling strength b"

Fig.4

The convergence time of leader-following C-S system of the effect of agents′ number affected by leader"

1 CUCKER F , SMALE S . Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52 (5): 852- 862.
doi: 10.1109/TAC.2007.895842
2 WAN Z . Flocking for multi-agent dynamical systems[M]. Saarland Saarbrücken, Germany: Lap Lambert Academic Publishing, 2012.
3 YU W , CHEN G , CAO M . Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities[J]. Systems & Control Letters, 2010, 59 (9): 543- 552.
4 DONG J , QIU L . Flocking of the Cucker-Smale model on general digraphs[J]. IEEE Transactions on Automatic Control, 2017, 62 (10): 5234- 5239.
doi: 10.1109/TAC.2016.2631608
5 RU L , XUE X . Multi-cluster flocking behavior of the hierarchical Cucker-Smale model[J]. Journal of the Franklin Institute Engineering & Applied Mathematics, 2017, 354 (5): 2371- 2392.
6 LU J , HO D W , KURTHS J . Consensus over directed static networks with arbitrary finite communication delays[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2009, 80 (2): 066121.
7 GUAN Z , LIU Z , FENG G , et al. Impulsive consensus algorithms for second-order multi-agent networks with sampled information[J]. Automatica, 2012, 48 (7): 1397- 1404.
doi: 10.1016/j.automatica.2012.05.005
8 ZHAO H , JU H . Dynamic output feedback consensus of continuous-time networked multi-agent systems[M]. New Jersey Hoboken, USA: John Wiley & Sons, Inc, 2015.
9 LEE T H , JU H P , JI D H , et al. Leader-following consensus problem of heterogeneous multi-agent systems with nonlinear dynamics using fuzzy disturbance observer[J]. Complexity, 2014, 19 (4): 20- 31.
doi: 10.1002/cplx.v19.4
10 WANG X , SONG J . Synchronization of the fractional order hyberchaos Lorenz systems with activation feedback control[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14 (8): 3351- 3357.
doi: 10.1016/j.cnsns.2009.01.010
11 WANG X , HE Y . Projective synchronization of fractional order chaotic system based on linear separation[J]. Physics Letters A, 2008, 372 (4): 435- 441.
doi: 10.1016/j.physleta.2007.07.053
12 WANG X , WANG M . Dynamic analysis of the fractional-order liu system and its synchronization[J]. Chaos, 2007, 17 (3): 033106.
doi: 10.1063/1.2755420
13 LIN D , WANG X . Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation[J]. Fuzzy Sets and Systems, 2010, 161 (15): 2066- 2080.
doi: 10.1016/j.fss.2010.03.006
14 ABD-ELAZIM S M , ALI E S . A hybrid particle swarm optimization and bacterial foraging for power system stability enhancement[J]. International Journal of Electrical Power & Energy Systems, 2013, 46 (2): 334- 341.
15 COUZIN I D , KRAUSE J , FRANKS N R , et al. Effective leadership and decision-making in animal groups on the move[J]. Nature, 2005, 433 (7025): 513.
doi: 10.1038/nature03236
16 KATZ Y , TUNSTRØM K , LOANNOU C C , et al. Inferring the structure and dynamics of interactions in schooling fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (46): 18720- 18725.
doi: 10.1073/pnas.1107583108
17 TOPAZ C M , BERTOZZI A L , LEWIS M A . A nonlocal continuum model for biological aggregation[J]. Bull Math Biol, 2006, 68 (7): 1601.
doi: 10.1007/s11538-006-9088-6
18 ZHANG H P , BE'ER A , FLORIN E L , et al. Collective motion and density fluctuations in bacterial colonies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (31): 13626- 13630.
doi: 10.1073/pnas.1001651107
19 VICSEK T , CZIROK A , BEN-JACOB E , et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75 (6): 1226.
doi: 10.1103/PhysRevLett.75.1226
20 VICSEK T , ZAFEIRIS A . Collective motion[M]. Berlin Heidelberg, Germany: Springer, 1999: 152- 164.
21 JADBABAIE A , LIN J , MORSE A S . Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48 (6): 988- 1001.
doi: 10.1109/TAC.2003.812781
22 LIU Y , WU J . Flocking and asymptotic velocity of the Cucker-Smale model with processing delay[J]. Journal of Mathematical Analysis & Applications, 2014, 415 (1): 53- 61.
23 HA S Y , LEE K , LEVY D . Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system[J]. Communications in Mathematical Sciences, 2009, 7 (2009): 453- 469.
24 SUN Y , LIN W . A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system[J]. Chaos an Interdisciplinary Journal of Nonlinear Science, 2015, 16 (8): 852.
25 TON T V , LINH N T H , YAGI A . Flocking and non-flocking behavior in a stochastic Cucker-Smale system[J]. Analysis & Applications, 2014, 12 (1): 63- 73.
26 SHEN J . Cucker-Smale flocking under hierarchical leadership[J]. Siam Journal on Applied Mathematics, 2007, 68 (3): 694- 719.
27 CUCKER F , DONG J G . On the critical exponent for flocks under hierarchical leadership[J]. Mathematical Models & Methods in Applied Sciences, 2009, 19 (suppl.1): 1391- 1404.
28 LI Z , XUE X . Cucker-Smale flocking under rooted leadership with fixed and switching topologies[J]. Siam Journal on Applied Mathematics, 2010, 70 (7-8): 3156- 3174.
29 DALMAO F, MORDECKI E. Cucker-Smale flocking under hierarchical leadership and random interactions[J]. 2010, 71(4): 1307-1316.
30 LI Z , XUE X . Cucker-Smale flocking under rooted leadership with free-will agents[J]. Physica A Statistical Mechanics & Its Applications, 2014, 410 (12): 205- 217.
31 HAN Y , ZHAO D , SUN Y . Finite-time flocking problem of a Cucker-Smale-type self-propelled particle model[J]. Complexity, 2016, 21 (Suppl.1): 354- 361.
32 SUN Y , LIN W . A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system[J]. Chaos, 2015, 16 (8): 852.
33 OLFATI-SABER R , MURRAY R M . onsensus problems in networks of agents with switching topology and time-delays[J]. IEEE Trans. Automat. Control, 2004, 49, 1520- 1532.
doi: 10.1109/TAC.2004.834113
34 JIANG F , WANG L . Finite-time information consensus for multi-agent systems with fixed and switching topologies[J]. Physical D Nonlinear Phenomena, 2009, 238 (16): 1550- 1560.
doi: 10.1016/j.physd.2009.04.011
35 HORN R A , JOHNSON C R . Matrix Analysis[M]. Cambridge: Cambridge University Press, 1985.
36 WANG H , HAN Z Z , XIE Q Y , et al. Finite-time synchronization of uncertain unified chaotic systems based on CLF[J]. Nonlinear Analysis Real World Applications, 2009, 10 (5): 2842- 2849.
doi: 10.1016/j.nonrwa.2008.08.010
37 WANG L , FENG X . Finite-time consensus problems for networks of dynamic agents[J]. IEEE Transactions on Automatic Control, 2010, 55 (4): 950- 955.
doi: 10.1109/TAC.2010.2041610
[1] ZHAO Zhan-shan1,2, ZHANG Jing3, SUN Lian-kun, DING Gang1. Design of self-adaptive sliding mode controller with finite time convergence [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 74-78.
[2] QIAO Wei1, WANG Hui-yuan1,2, WU Xiao-juan1, LIU Peng-wei1. Crowd object detection and classification based on a chaotic dynamic model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 19-23.
[3] Liu Yun-Gang. Finite-time stabilization for a class of first-order nonlinear systems with unknown control direction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 37-46.
[4] DING Yu-qin,LIU Yun-gang . An approach to design the finite time functional observer for a class of nonlinear systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 56-60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 28 -34 .
[2] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[3] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .
[4] WANG Huan, ZHOU Zhongmei. An over sampling algorithm based on clustering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 134 -139 .
[5] XIAO Qiao, PEI Jihong, WANG Lixia, GONG Zhicheng. Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 29 -35 .
[6] MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis on typical working cycle of wheel loader[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 82 -87 .
[7] WANG Lanzhong, MENG Wenjie. Video perceptual encryption algorithm in remote education receiver[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(4): 40 -44 .
[8] LIANG Zehua, CUI Yaodong, ZHANG Yu. The one-dimensional cutting stock problem with sequence-dependent cut losses[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 75 -80 .
[9] ZHU Dengyuan, YAO Zhanyong, GE Shouren. Study on buried abutment slope transformation based on numerical simulation and site detections[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 86 -94 .
[10] YE Mingquan, GAO Lingyun, WAN Chunyuan. Gene expression data classification based on artificial bee colony and SVM[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 10 -16 .