Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (5): 109-117.doi: 10.6040/j.issn.1672-3961.0.2017.442

• Civil Engineering • Previous Articles     Next Articles

The effect of hydrochemical conditions on compression characteristics of kaolinite

Zhechao WANG1,2(),Xinyu WANG1,Changfu WEI3,Wei LI1,Guangping DUAN1,Shuai LI1,Chunyu ZHANG1   

  1. 1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China
    2. Key laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110004, Liaoning, China
    3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • Received:2017-09-04 Online:2018-10-01 Published:2017-09-04
  • Supported by:
    国家自然科学基金资助项目(51779045);国家自然科学基金资助项目(41572293);中国科学院大学生创新实践训练计划资助项目(Y110061Q01)

Abstract:

In order to investigate the compression characteristics of kaolinite in various hydrochemical conditions, oedometer tests on kaolinite specimens saturated with acidic, alkaline and saline solutions were performed. The results indicated that Na+ and Ca2+ induced the compressibility of specimens significantly in low pressure level, while the increase of ion concentration made a growing trend in the compressibility of kaolinite; in the same concentration, the effect of Ca2+ on the compressibility of specimens was more obvious than Na+; in acidic or alkaline conditions, the compressibility of kaolinite was improved; hydrochemical condition also had effect on the rebound curve. Then the mechanism of the test was analyzed and it was considered that the effect of variation in hydrochemical conditions on compressibility of kaolinite included both mechanical model and physical-chemical model. Cation exchange and adsorption, dissolution and sedimentation were important influential factors of the compressibility of soil. The basis was provided for further revealing the mechanical mechanism of water-soil chemical interaction.

Key words: hydrochemical condition, kaolinite, compressibility, mechanical model, physical-chemical model

CLC Number: 

  • U43

Table 1

Initial states of specimens"

土类 设计含水率
ω0/%
干密度
ρd/ (g·cm-3)
试样直径
d/mm
初始高度
h0/mm
颗粒密度
ρs/(g·cm-3)
初始孔隙比
e0
高岭土 48.3 0.858 61.8 20 2.65 2.09

Table 2

Preparation of solution"

编号 溶质 浓度/(mol·L-1) pH
S1 去离子水 7
S2 NaCl 0.50 7
S3 NaCl 0.10 7
S4 NaCl 0.05 7
S5 CaCl2 0.50 7
S6 CaCl2 0.10 7
S7 CaCl2 0.05 7
S8 NaCl 0.10 4
S9 NaCl 0.10 5
S10 NaCl 0.10 9
S11 NaCl 0.10 10

Fig.1

Instrument and specimens saturating"

Fig.2

One-dimensional consolidation curves of kaolinite in solutions with various ion concentrations"

Fig.3

One-dimensional consolidation curves of kaolinite in solutions with various solutes"

Fig.4

One-dimensional consolidation curves of kaolinite in solutions with various pH values"

Table 3

Total deformation and elastic deformation of specimens in different solutions"

编号 总变形量/
mm
弹性变形量/mm 弹性变形所占比例/%
S1 1.742 0.089 5.09
S2 1.454 0.099 6.78
S3 1.411 0.108 7.67
S4 1.338 0.103 7.71
S5 1.336 0.104 7.76
S6 1.187 0.105 8.82
S7 1.129 0.113 9.98
S8 1.706 0.085 4.96
S9 1.615 0.094 5.80
S10 1.658 0.102 6.16
S11 1.640 0.099 6.04

Fig.5

Electric charge on soil particle"

Fig.6

Cementation of soil particles"

Fig.7

Coefficient of compressibility of specimens at various pressure level in CaCl2 solution with different concentrations"

Fig.8

Coefficient of compressibility of specimens at 100~200 kPa in CaCl2 solution with various concentrations"

Fig.9

Axial strain of specimens at 200 kPa in solutions with various concentrations"

Fig.10

Coefficient of compressibility of specimens atvarious pressure levels in 0.1 mol/L NaCl solution with different pH values"

Fig.11

Rebound index of specimens in solutions with various concentrations"

Fig.12

Rebound index of specimens in 0.1 mol/L NaCl solution with various pH values"

1 汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39 (4): 104- 109.
doi: 10.3321/j.issn:0529-6579.2000.04.024
TANG Liansheng . Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39 (4): 104- 109.
doi: 10.3321/j.issn:0529-6579.2000.04.024
2 顾季威. 酸碱废液侵蚀地基土对工程质量的影响[J]. 岩土工程学报, 1988, 10 (4): 72- 78.
doi: 10.3321/j.issn:1000-4548.1988.04.008
GU Jiwei . The effects of acid-alkali wastewater on the quality of engineering[J]. Chinese Journal of Geotechnical Engineering, 1988, 10 (4): 72- 78.
doi: 10.3321/j.issn:1000-4548.1988.04.008
3 孙重初. 酸液对红粘土物理力学性质的影响[J]. 岩土工程学报, 1989, 11 (4): 89- 93.
doi: 10.3321/j.issn:1000-4548.1989.04.011
SUN Chongchu . The effects of acid wastewater on the physical-mechanical characteristics of red clay[J]. Chinese Journal of Geotechnical Engineering, 1989, 11 (4): 89- 93.
doi: 10.3321/j.issn:1000-4548.1989.04.011
4 徐国庆. 缓冲/回填材料与添加剂的选择[J]. 铀矿地质, 1996, 12 (4): 238- 244.
XU Guoqing . Selection of buffer/backfill materials and their additives[J]. Uranium Geology, 1996, 12 (4): 238- 244.
5 秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土的胀缩变形特性及其影响因素研究[J]. 岩土工程学报, 2008, 30 (7): 1005- 1010.
doi: 10.3321/j.issn:1000-4548.2008.07.010
QIN Bing , CHEN Zhenghan , LIU Yuemiao , et al. Swelling-shrinkage behaviour of gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (7): 1005- 1010.
doi: 10.3321/j.issn:1000-4548.2008.07.010
6 OLSON R E , MESRI G . Mechanisms controlling compressibility of clays[J]. Journal of Soil Mechanics & Foundations Div, 1970, 96 (SM6): 1865- 1879.
7 DI MAIO C . Exposure of bentonite to salt solution: osmotic and mechanical effects[J]. Geotechnique, 1996, 46 (4): 695- 707.
doi: 10.1680/geot.1996.46.4.695
8 DI MAIO C , SANTOLI L , SCHIAVONE P . Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mechanics of Materials, 2004, 36 (5-6): 435- 451.
doi: 10.1016/S0167-6636(03)00070-X
9 黄振育, 韦昌富, 颜荣涛, 等. 聚四氟乙烯材料在环境岩土工程土工试验中的应用[J]. 桂林理工大学学报, 2013, 33 (3): 499- 503.
doi: 10.3969/j.issn.1674-9057.2013.03.018
HUANG Zhenyu , WEI Changfu , YAN Rongtao , et al. Application of PTFE in environmental geotechnology engineering test[J]. Journal of Guilin University of Technology, 2013, 33 (3): 499- 503.
doi: 10.3969/j.issn.1674-9057.2013.03.018
10 于海浩.孔隙水溶液浓度对黏土力学特性影响规律研究[D].桂林:桂林理工大学, 2015.
YU Haihao. Effects of pore solution concentrations on mechanical properties of clay[D]. Guilin: Guilin University of Technology, 2015.
11 WAHID A S , GAJO A , DI MAGGIO R . Chemo-mechanical effects in kaolinite:Part 1: prepared samples[J]. Geotechnique, 2011, 61 (6): 439- 447.
doi: 10.1680/geot.8.P.067
12 WAHID A S , GAJO A , DI MAGGIO R . Chemo-mechanical effects in kaolinite: Part 2: exposed samples and chemical and phase analyses[J]. Géotechnique, 2011, 61 (6): 449- 457.
doi: 10.1680/geot.8.P.068
13 颜荣涛, 吴二林, 徐文强, 等. 水化学环境变异下黏土物理力学特性研究进展[J]. 长江科学院院报, 2014, 31 (6): 41- 47, 52.
doi: 10.3969/j.issn.1001-5485.2014.06.009
YAN Rongtao , WU Erlin , XU Wenqiang , et al. Research progress of the physical and mechanical responses of clays to the variation of hydrochemical environment[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31 (6): 41- 47, 52.
doi: 10.3969/j.issn.1001-5485.2014.06.009
14 钟孝乐, 詹良通, 龚标, 等. 我国3种典型高岭土的固结、渗透及吸附特性[J]. 浙江大学学报(工学版), 2014, 48 (11): 1947- 1954.
ZHONG Xiaole , ZHAN Liangtong , GONG Biao , et al. Consolidation permeability and adsorption properties of three kinds of typical kaokin clays in China[J]. Journal of Zhejiang University(Engineering Science), 2014, 48 (11): 1947- 1954.
15 中华人民共和国建设部.土工试验方法标准: GB/T 50123—1999[S].北京:中国计划出版社, 1999.
16 王者超, 乔丽苹. 土蠕变性质及其模型研究综述与讨论[J]. 岩土力学, 2011, 32 (8): 2251- 2260.
doi: 10.3969/j.issn.1000-7598.2011.08.002
WANG Zhechao , QIAO Liping . A review and discussion on creep behavior of soil and its models[J]. Rock and Soil Mechanics, 2011, 32 (8): 2251- 2260.
doi: 10.3969/j.issn.1000-7598.2011.08.002
17 王者超, 李术才. 高应力下颗粒材料一维力学特性研究:Ⅰ:压缩性质[J]. 岩土力学, 2010, 31 (10): 3051- 3057.
doi: 10.3969/j.issn.1000-7598.2010.10.004
WANG Zhechao , LI Shucai . One-dimensional mechanical behavior of granular material under high stresses:Part Ⅰ: compression behavior[J]. Rock and Soil Mechanics, 2010, 31 (10): 3051- 3057.
doi: 10.3969/j.issn.1000-7598.2010.10.004
18 王者超, 李术才. 高应力下颗粒材料一维力学特性研究:Ⅱ:蠕变性质[J]. 岩土力学, 2010, 31 (11): 3392- 3396.
doi: 10.3969/j.issn.1000-7598.2010.11.006
WANG Zhechao , LI Shucai . One-dimensional mechanical behavior of granular material under high stresses:Part Ⅰ: creep behavior[J]. Rock and Soil Mechanics, 2010, 31 (11): 3392- 3396.
doi: 10.3969/j.issn.1000-7598.2010.11.006
19 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
20 谭罗荣, 张梅英. 一种特殊土微观结构特性的研究[J]. 岩土工程学报, 1982, 4 (2): 26- 35.
doi: 10.3321/j.issn:1000-4548.1982.02.003
TAN Luorong , ZHANG Meiying . The research on microscopic structure properties of a particular soil[J]. Chinese Journal of Geotechnical Engineering, 1982, 4 (2): 26- 35.
doi: 10.3321/j.issn:1000-4548.1982.02.003
21 宋宇, 高利, 陈学军, 等. 红粘土微结构特征与变形机理[J]. 地质灾害与环境保护, 2015, 26 (3): 73- 76.
doi: 10.3969/j.issn.1006-4362.2015.03.015
SONG Yu , GAO Li , CHEN Xuejun , et al. Characteristics and deformation mechanism of microstructure for red clay[J]. Journal of Geological Hazards and Environment Preservation, 2015, 26 (3): 73- 76.
doi: 10.3969/j.issn.1006-4362.2015.03.015
22 张先伟, 孔令伟, 陈成, 等. 水化学环境对湛江组黏土结构强度的影响研究[J]. 岩土工程学报, 2017, 39 (11): 1967- 1975.
doi: 10.11779/CJGE201711003
ZHANG Xianwei , KONG Lingwei , CHEN Cheng , et al. Effects of hydrochemistry on structural strength of Zhanjiang formation clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (11): 1967- 1975.
doi: 10.11779/CJGE201711003
23 汪民. 饱水粘性土中粘粒与水相互作用的初步探讨[J]. 水文地质工程地质, 1987, 13 (3): 1- 5, 12.
WANG Min . The interaction between water and clay particles in saturated clayey soils[J]. Hydrogeology & Engineering Geology, 1987, 13 (3): 1- 5, 12.
24 于明波, 颜荣涛, 李爱军, 等. 水化学效应对自然土物理力学特性的影响[J]. 工程勘察, 2017, 45 (5): 7- 15.
YU Mingbo , YAN Rongtao , LI Aijun , et al. Chemical effects of pore solution on physical and mechanical characteristics of natural clayey soils[J]. Geotechnical Investigation & Surveying, 2017, 45 (5): 7- 15.
25 王者超, 乔丽苹, 李术才. 荷载水平和孔隙比对土次压缩性质影响研究[J]. 土木工程学报, 2013, 46 (1): 112- 118.
WANG Zhechao , QIAO Liping , LI Shucai . Influence of load level and void ratio on secondary compressibility of soil[J]. China Civil Engineering Journal, 2013, 46 (1): 112- 118.
26 常防震, 陈宝, 朱嵘. 粘土微结构特征与变形机理研究进展[J]. 地下空间与工程学报, 2009, 5 (增刊2): 1573- 1579.
CHANG Fangzhen , CHEN Bao , ZHU Rong . Advances in study on microstructural characteristic and deformation mechanism of clay[J]. Chinese Journal of Underground Space and Engineering, 2009, 5 (Suppl.2): 1573- 1579.
27 孙维林. 粘土理化性质[M]. 北京: 地质出版社, 1992.
28 奥西波夫B И.粘土类土和岩石的强度与变形性能的本质[M].李生林,张之一,译.北京:地质出版社, 1985: 48-52.
29 HICHER P Y , WAHYUDI H , TESSIER D . Microstructural analysis of inherent and induced an isotropy in clay[J]. Mechanics of Cohesive-Frictional Materials, 2000, 3 (5): 341- 371.
30 周建, 邓以亮, 曹洋, 等. 杭州饱和软土固结过程微观结构试验研究[J]. 中南大学学报(自然科学版), 2014, 45 (6): 1998- 2005.
ZHOU Jian , DENG Yiliang , CAO Yang , et al. Experimental study of microstructure of Hangzhou saturated soft soil during consolidation process[J]. Journal of Central South University (Science and Technology), 2014, 45 (6): 1998- 2005.
[1] ZHANG Xu-tao1,2, ZHANG Qiang-yong1, CAO Guan-hua1, XU Xiao-bin1. Effects on iron-barite-sand mixed similar material  properties  induced by molding pressure [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 89-95.
[2] GU An, FANG Zhi-Jun. Static working principle of robot whisker sensors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 84-86.
[3] LI Yong, YANG Qiang, ZHU Wei-shen, LI Shu-cai, ZHANG Qiang-yong, WANG Han-peng. The strain measurement techniques based on the static resistive strain gauge and optical fiber strain sensor and their applications in geo-mechanical model tests [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 129-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[2] HUANG Jinchao. A new method for muti-objects image segmentation based on faster region proposal networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 20 -26 .
[3] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45 -53 .
[4] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .
[5] WANG Huan, ZHOU Zhongmei. An over sampling algorithm based on clustering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 134 -139 .
[6] YANG Ai-min1, ZHOU Yong-mei1, DENG He2, ZHOU Jian-feng3. Method of feature generation and selection for network traffic classification[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 1 -7 .
[7] YOU Ming-yu, CHEN Yan, LI Guo-zheng. Im-IG: A novel feature selection method for imbalanced problems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 123 -128 .
[8] WU Guo-yao1, MA Li-yong2. A method based on FFD B-spline registration of the iris image fusion[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 24 -27 .
[9] XIAO Qiao, PEI Jihong, WANG Lixia, GONG Zhicheng. Ship detection in remote sensing image based on the fuzzy fusion of multi-channel Gabor filtering[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 29 -35 .
[10] MA Xiangming, SUN Xia, ZHANG Qiang. Construction and analysis on typical working cycle of wheel loader[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 82 -87 .