JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (1): 104-111.doi: 10.6040/j.issn.1672-3961.0.2016.108

Previous Articles     Next Articles

Design of vehicle hydraulic active stabilizer bar and its control algorithm

KONG Zhenxing, PI Dawei*, WANG Xianhui, WANG Hongliang, CHEN Shan   

  1. College of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2016-03-28 Online:2017-02-20 Published:2016-03-28

Abstract: According to vehicles active roll control, a design solution to hydraulic active stabilizer bar(ASB)system was put forward based on the analysis of vehicles roll and yaw response characteristics. The structure and principle of hydraulic ASB system was introduced, and its sliding mode control algorithm was designed to improve the vehicles roll stability. The anti-roll torque of ASB system on the front and rear axles were distributed dynamically to improve vehicles steering characteristics. Based on MATLAB/Simulink, 14 degree-of-freedom vehicle, hydraulic actuators model, road input model and so on were established. The simulation of PID+feedforward control and sliding mode control system was carried out under typical maneuvers. Simulation results showed that the hydraulic ASB system using sliding mode control algorithm had obvious advantage in the robustness and adaptability compared with PID+feedforward control, which could enhance vehicle roll and yaw response effectively, and improve roll stability, ride comfort and handling stability further.

Key words: hydraulic active stabilizer bar, design solution, control algorithm, roll stability, ride comfort, handling stability

CLC Number: 

  • U461.4
[1] 金智林,翁建生,胡海岩. 汽车侧翻及稳定性分析[J].机械科学与技术, 2007, 26(3):355-358. JIN Zhilin, WENG Jiansheng, HU Haiyan. Analysis of vehicles rollover stability[J]. Mechanical science and Technology, 2007, 26(3):355-358.
[2] MIZUTA Y, SUZUMURA M, MATSUMOTO S. Ride comfort enhancement and energy efficiency using electric active stabiliser system[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics & Mobility, 2010, 48(11):1305-1323.
[3] JEON K, HWANG H, CHOI S, et al. Development of an electric active roll control(ARC)algorithm for a SUV[J]. International Journal of Automotive Technology, 2012, 13(2):247-253.
[4] 夏如艇,武马修一. 采用电机作动器的主动悬架系统的仿真[J].汽车工程,2013, 35(5):445-450. XIA Ruting, BUMA Shunichi. A simulation of active suspension system with motor actuator[J]. Automotive Engineering, 2013, 35(5): 445-450.
[5] 周兵,吕绪宁,范璐,等. 主动悬架与主动横向稳定杆的集成控制[J]. 中国机械工程, 2014(14):1978-1983. ZHOU Bing, LYU Xuning, FAN Lu, et al. Integrated control of active suspension system and active roll stabilizer [J]. China Mechanical Engineering, 2014(14):1978-1983.
[6] KIM S, PARK K, SONG H J, et al. Development of control logic for hydraulic active roll control system[J]. International Journal of Automotive Technology, 2012, 13(1):87-95.
[7] 孔振兴,皮大伟,王洪亮,等. 考虑液压迟滞的汽车主动式稳定杆改进算法[J].科学技术与工程,2016, 16(26):122-126, 134. KONG Zhenxing, PI Dawei, WANG Hongliang, et al. Improved control algorithm for vehicle active stabilizer bar considering hydraulic delay[J]. Science Technology and Engineering, 2016, 16(26):122-126, 134.
[8] SORNIOTTI A, D'ALFIO N. Vehicle dynamics simulation to develop an active roll control system[C] //SAE Technical Paper. Warrendale, the United States: SAE World Congress & Exhibition, 2007.
[9] 唐新蓬,段小成. 汽车侧倾稳定主动控制系统的仿真研究[J]. 汽车技术, 2008(8): 23-27. TANG Xinpeng, DUAN Xiaocheng. Simulation and study of vehicle roll active control system[J]. Automobile Technology, 2008(8):23-27.
[10] 王梦琳,孙涛,郑松林,等. 基于底盘子系统协同控制的车辆防侧翻性能分析[J]. 系统仿真学报, 2015, 27(1):163-170. WANG Mengling, SUN Tao, ZHENG Songlin, et al. Simulation of anti-rollover performance based on chassis collaborative control[J]. Journal of System Simulation, 2015, 27(1):163-170.
[11] LAM Q, WANG Lifu, ZHANG Nong. Experimental implimentation of a fuzzy controller for an active hydraulically interconnected suspension on a sport utility vehicle[C] //Intelligent Vehicles Symposium. Piscataway, the United States: IEEE, 2013:383-390.
[12] 赵韩,赵福民,黄康,等. 液压马达式汽车主动稳定杆系统建模与控制[J]. 中国机械工程, 2016, 27(14):1976-1981. ZHAO Han, ZHAO Fumin, HUANG Kang, et al. Modeling and control of vehicle active stabilizer bar system with hydraulic motor[J]. China Mechanical Engineering, 2016, 27(14):1976-1981.
[13] VARGA B, NÉMETH B, GÁSPÁR P. Design of anti-roll bar systems based on hierarchical control[J]. Strojniški Vestnik-Journal of Mechanical Engineering, 2015, 61(6): 374-382.
[14] KIM H J, YANG H S, PARK Y P, et al. Robust roll control of a vehicle: experimental study using a hardware-in-the-loop set-up[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(1):1-9.
[15] KIM H J. Robust roll motion control of a vehicle using integrated control strategy[J]. Control Engineering Practice, 2011, 19: 820-827.
[16] KONG Zhenxing, PI Dawei, WANG Xianhui, et al. Design and evaluation of a hierarchical control algorithm for an electric active stabilizer bar system[J]. Strojniški Vestnik-Journal of Mechanical Engineering, 2016, 62(10): 565-576.
[17] KONG Zhenxing, PI Dawei, CHEN Shan, et al. Design and simulation of hierarchical control algorithm for electric active stabilizer bar system[C] //Chinese Control and Decision Conference. Piscataway, the United States: IEEE, 2016.
[18] GHIKE C, SHIM T. 14 degree-of-freedom vehicle model for roll dynamics study[C] //SAE Technical Paper. Warrendale, the United States: SAE World Congress & Exhibition, 2006.
[19] DUGOFF H, FANCHER P S, SEGEL L. An analysis of tire traction properties and their influence on vehicle dynamic performance[C] //International Automobile Safety Conference. Warrendale, the United States: SAE Transactions, 1970.
[20] 张立军,张天侠.车辆四轮相关时域随机输入通用模型的研究[J].农业机械学报, 2005(12):29-31. ZHANG Lijun, ZHANG Tianxia. Study on general model of random inputs of the vehicle with four wheels correlated in time domain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005(12):29-31.
No related articles found!
Full text



No Suggested Reading articles found!