-
一种相似子空间嵌入算法
- 钱文光,李会民
-
2018, 48(1):
8-14.
doi:10.6040/j.issn.1672-3961.0.2017.401
-
摘要
(
1456 )
PDF (4344KB)
(
555
)
收藏
-
相关文章 |
多维度评价
通过对经典的线性判别分析(Linear Discriminant Analysis, LDA)及最大边界准则(Maximum Margin Criterion, MMC)方法的分析,提出一种类内子空间深入学习的监督降维方法——相似子空间嵌入(Similarity Subspace Embedding, SSE),对类内离散度矩阵进行深入学习,得到每类的类内离散度子空间,通过对所有类内离散度子空间的学习,获得信息更为丰富的类间离散度矩阵,进而得到更好的低维空间。与MMC方法相比,SSE方法对类内数据学习更充分,同时避免了LDA方法存在的小样本问题。在AR人脸图像、Coil数据集及手写体上的试验结果表明,与其它三种相关的经典方法相比, SSE方法具有较高的识别率,说明了该方法的有效性。