您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 105-112.doi: 10.6040/j.issn.1672-3961.0.2016.478

• • 上一篇    下一篇

TBM掘进前方不良地质与岩体参数的综合获取方法

刘斌1,李术才1,李建斌2,王玉杰3,张建清4,5,聂利超1,王雪亮6   

  1. 1. 山东大学岩土与结构工程研究中心, 山东 济南 250061;2.中铁工程装备集团有限公司, 河南 郑州 450016;3. 中国水利水电科学研究院岩土工程研究所, 北京 100048;4.长江地球物理探测(武汉)有限公司, 湖北 武汉 430014;5. 长江勘测规划设计研究院, 湖北 武汉 430014;6. 中铁工程设计咨询集团有限公司, 北京 100055
  • 收稿日期:2016-12-16 出版日期:2016-12-20 发布日期:2016-12-16
  • 作者简介:刘斌(1983— ),男,山东高唐人,副教授,硕导,博士,主要研究方向为隧道不良地质超前预报.E-mail:linbin0635@163.com
  • 基金资助:
    国家重点基础研究发展计划(973)资助项目(2013CB036002,2015CB058101);国家重大科研仪器设备研制专项资助项目(51327802);国家自然科学基金重点资助项目(51139004)

Integrated acquisition method of adverse geology and rock properties ahead of tunnel face in TBM construction tunnel

LIU Bin1, LI Shucai1, LI Jianbin2, WANG Yujie3, ZHANG Jianqing4,5, NIE Lichao1, WANG Xueliang6   

  1. 1. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. China Railway Engineering Equipment Group Co Ltd, Zhengzhou 450016, Henan, China;
    3. Department of Geotechnical Engineering, China Institute of Water Resources and Hydropower Research, Beijing 100048, China;
    4. Changjiang Engineering Geophysical Exploration(Wuhan)Co Ltd, Wuhan 430010, Hubei, China;
    5. Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, Hubei, China;
    6. China Railway Engineering Consultants Group Co Ltd, Beijing 100055, China
  • Received:2016-12-16 Online:2016-12-20 Published:2016-12-16

摘要: TBM在穿越断层、破碎带、岩溶发育区等不良地质时有时出现突涌水、塌方、卡机等灾害事故,导致TBM掘进效率低下、工期延误甚至是TBM机械损坏和人员伤亡。出现上述问题的一个主要原因就是TBM工作环境极为复杂,难以提前获取前方不良地质与主要岩体参数。因此,提出了一套以地球物理超前地质预报和基于“岩-机关系”预测岩体主要参数的解决方法。在该方法中,采用三维地震超前预报技术远距离识别和预报断层、破碎带、大型溶洞等不良地质;采用三维激发极化获取掌子面前方含、导水地质构造;采用机器学习的手段挖掘TBM机械电液参数与主要岩体力学参数的关系,并初步实现了TBM前方岩体单轴抗压强度的预测。以上述三种方法为核心,提出了TBM前方不良地质与主要岩体参数的综合获取方法及其流程,在实际工程中得到了验证。实际案例表明,综合获取方法可为TBM安全、高效掘进提供前方不良地质和单轴抗压强度信息,并为TBM掘进方案决策提供依据。

关键词: 三维地震超前预报, TBM施工, 三维激发极化超前预报, 岩体参数预测, 超前地质预报

Abstract: TBM construction tunnel was easily hampered by hazard and accidents like water inrush, collapse and TBM jam, in the occurrence of faults, fractured zone and karstic area, which could cause the losing of TBM excavation efficiency and delay the tunnel construction. It was because of the complex environment in TBM construction tunnel that the adverse geology and rock properties was hard to be acquired. To solve the problem, a solving methodology was put forth based on geological prospecting and rock property estimation. The methodology was consisted of ahead geological prospecting by using geophysical methods and rock properties estimation based on the relationship between the rock properties 山 东 大 学 学 报 (工 学 版)第46卷 - 第6期刘斌,等:TBM掘进前方不良地质与岩体参数的综合获取方法 \=-and TBM machine data. In this methodology, the 3D seismic prospecting method was used to identify and locate the faults, fractured zone or karst cave ahead of the tunnel face. The 3D IP method was used to prospect the water bearing geological structure ahead of tunnel face. In addition, the rock properties were estimated by means of machine learning. The uniaxial compression strength of the surrounding rocks was estimated using data mining. Based on three methods mentioned above, an integrated acquisition method and its procedure of adverse geology and rock properties were proposed. With the test and verification in the field case of a project, the proposed methodology was proved to be feasible and could provide reasonable reference for TBM excavation.

Key words: ahead geological prospecting, ahead prospecting with three dimensional seismic method, ahead prospecting with three dimensional induced polarization, TBM construction, rock properties estimation

中图分类号: 

  • U45
[1] 李术才,刘斌,孙怀凤,等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报,2014,33(6):1090-1113. LI Shucai, LIU Bin, SUN Huaifeng, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1090-1113.
[2] 张镜剑,傅冰骏. 隧道掘进机在我国应用的进展[J]. 岩石力学与工程学报,2007,26(2):226-238. ZHANG Jingjian, FU Bingjun. Advances in tunnel boring machine application in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2): 226-238.
[3] PETRONIO L, POLETTO F. Seismic-while-drilling by using tunnel boring machine noise[J]. Geophysics, 2002, 67(6): 1798-1809.
[4] BORM G, GIESE R, OTTO P, et al. Integrated seismic imaging system for geological prediction during tunnel construction[C] //Proceedings of 10th ISRM Congress,International Society for Rock Mechanics. [S. l.] :[s. n.] , 2003:137-142.
[5] KAUS A, BOENING W. BEAM-geoelectrical ahead monitoring for TBM-drives[J]. Geomechanics and Tunnelling, 2008, 1(5): 442-449.
[6] 朱劲, 李天斌, 李永林, 等. Beam 超前地质预报技术在铜锣山隧道中的应用[J]. 工程地质学报, 2007, 15(2): 258-262. ZHU Jin, LI Tianbin, LI Yonglin, et al. Application of an electrical method “BEAM” for advanced geological exploration to tunneling in TongLuo mountains for Dian-Lin highway[J]. Journal of Engineering Geology, 2007, 15(2):258-262.
[7] 李术才,刘斌,刘征宇,等. TBM 施工隧道前向三维激发极化法超前探测装置系统及方法[P]. 中国:ZL2013100051329, 2013-05-01.
[8] YAMAMOTO T, SHIRASAGI S, YAMAMOTO S, et al. Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data[J]. Tunnelling and Underground Space Technology, 2003, 18(2): 213-221.
[9] 岳中琦. 钻孔过程监测(DPM)对工程岩体质量评价方法的完善与提升[J]. 岩石力学与工程学报,2014,33(10):1977-1996. YUE Zhongqi. Drilling process monitoring for refining and upgrading rock mass quality classification methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10):1977-1996.
[10] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报,2012,31(10):1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and counter measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956.
[11] FROUGH O, TORABI S R, YAGIZ S. Application of RMR for estimating rock-mass-related TBM utilization and performance parameters: a case study[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1305.
[12] BENATO A, ORESTE P. Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74: 119-127.
[13] 宋杰. 隧道施工不良地质三维地震超前探测方法及其工程应用[D].济南:山东大学,2016. SONG Jie. The three dimensional seismic ahead prospecting method and its application for adverse geology in tunnel construction[D]. Jinan: Shandong University, 2016.
[14] 阮百尧, 邓小康, 刘海飞, 等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报, 2009, 52(1): 289-296. RUAN Baiyao, DENG Xiaokang, LIU Haifei, et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics, 2009, 52(1): 289-296.
[15] 柳建新, 邓小康, 郭荣文, 等. 坑道直流聚焦超前探测电阻率法有限元数值模拟[J]. 中国有色金属学报, 2012, 22(3): 970-975. LIU Jianxin, DENG Xiaokang, GUO Rongwen, et al. Numerical simulation of advanced detection with DC focus resistivity in tunnel by finite element method[J]. Chinese Journal of Nonferrous Metals, 2012, 22(3): 970-975.
[16] 李术才, 聂利超, 刘斌, 等. 多同性源阵列电阻率法隧道超前探测方法与物理模拟试验研究[J]. 地球物理学报, 2015, 58(4): 1434-1446. LI Shucai, NIE Lichao, LIU Bin, et al. Advanced detection and physical model test based on multi-electrode sources array resistivity method in tunnel[J]. Chinese Journal of Geophysics, 2015, 58(4): 1434-1446.
[17] 聂利超. 隧道施工含水构造激发极化定量超前地质预报理论及其应用[D]. 济南:山东大学,2014. NIE Lichao. Quantitative identification theory and its application of advanced geological prediction for water-bearing structure using induced polarization in tunnel construction period[D]. Jinan: Shandong University, 2014.
[18] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[19] PLATT J. Sequential minimal optimization: a fast algorithm for training support vector machines[R]. https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/.[2016-12-16] (1998-04-21).
[1] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[2] 周轮,李术才,许振浩,李利平,黄鑫,何树江,李国豪. 隧道综合超前地质预报技术及其工程应用[J]. 山东大学学报(工学版), 2017, 47(2): 55-62.
[3] 孙怀凤1,李术才1,李貅2,戚志鹏2,刘磊2,薛翊国1,苏茂鑫1,刘斌1,张文俊1. 核磁共振测深进行隧道超前地质预报的可行性[J]. 山东大学学报(工学版), 2013, 43(1): 92-97.
[4] 李志鹏,张庆松*,李术才,薛翊国,苏茂鑫,丁志海,张伟杰. 瞬变电磁预报方法在胶州湾海底隧道穿越F1-2含水断层中的应用[J]. 山东大学学报(工学版), 2011, 41(1): 101-104.
[5] 高阳 张庆松 原小帅 许振浩 刘斌. 地质雷达在岩溶隧道超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4): 82-86.
[6] 丁万涛 李术才 张庆松. TSP预报倾斜岩层分界面误差规律性探讨[J]. 山东大学学报(工学版), 2009, 39(4): 57-60.
[7] 张霄 李术才 张庆松 刘钦 张宁 刘斌. TSP信号采集质量影响因素的现场试验研究[J]. 山东大学学报(工学版), 2009, 39(4): 25-29.
[8] 邱道宏 钟世航 李术才 张乐文 苏茂鑫 孙怀凤. 陆地声纳法在隧道不良地质超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4): 17-20.
[9] 张庆松 许振浩 李术才. 岩溶隧道综合超前地质预报方法与工程应用[J]. 山东大学学报(工学版), 2009, 39(4): 7-11.
[10] 张广宪. 充填型溶腔的超前地质预报与地质灾害防治[J]. 山东大学学报(工学版), 2009, 39(4): 78-81.
[11] 李为腾 李术才 薛翊国 赵岩 丁志海. 地质雷达在胶州湾海底隧道F4-5含水断层超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4): 65-68.
[12] 原小帅 张庆松 许振浩 高阳. TSP超前地质预报异常地震波信号[J]. 山东大学学报(工学版), 2009, 39(4): 53-56.
[13] 许振浩 李术才 张庆松 李利平 张霄 高阳 原小帅. 组合爆破法TSP超前地质预报研究[J]. 山东大学学报(工学版), 2009, 39(4): 45-49.
[14] 赵岩 李术才 薛翊国 李为腾 丁志海. TSP203预报胶州湾海底隧道f2-1含水断层的实践[J]. 山东大学学报(工学版), 2009, 39(4): 40-44.
[15] 张庆松 李术才 韩宏伟 葛颜慧 刘人太 张霄. 岩溶隧道施工风险评价与突水灾害防治技术研究[J]. 山东大学学报(工学版), 2009, 39(3): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[4] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[5] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[6] 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78 -80 .
[7] 许延生,刘兴芳 . 模糊聚类迭代模型在水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 100 -104 .
[8] 李善评,胡振,孙一鸣,甄博如,张启磊,曹翰林 . 新型钛基PbO2电极的制备及电催化性能研究[J]. 山东大学学报(工学版), 2007, 37(3): 109 -113 .
[9] 李新平 代翼飞 胡静. 某岩溶隧道围岩稳定性及涌水量预测的流固耦合分析[J]. 山东大学学报(工学版), 2009, 39(4): 1 -6 .
[10] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .