您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (1): 74-82.doi: 10.6040/j.issn.1672-3961.0.2023.159

• 机器学习与数据挖掘 • 上一篇    

基于改进Bi-RRT算法的机器鱼路径规划方法

黄健堃1,2,3,薛钢1,2,3,4,刘延俊1,2,3,4*,王雨1,2,3,李厚池1,2,3,白发刚2,3,4   

  1. 1.山东大学机械工程学院, 山东 济南 250061;2.山东大学高效洁净机械制造教育部重点实验室, 山东 济南 250061;3.山东大学机械工程国家级实验教学示范中心, 山东 济南 250061;4.山东大学海洋研究院, 山东 青岛 266237
  • 发布日期:2024-02-01
  • 作者简介:黄健堃(1999— ),男,山东临沂人,硕士研究生,主要研究方向为机器人路径规划及水下仿鱼机器人. E-mail:huangjiankun123@163.com. *通信作者简介:刘延俊(1965— ),男,山东济南人,教授,博士生导师,博士,主要研究方向为自动化机械系统、流体动力控制、波浪能发电技术、深海探测技术与装备. E-mail:lyj111ky@163.com
  • 基金资助:
    国家自然科学基金资助项目(52001186);山东省自然科学基金资助项目(ZR2020QE292); 崂山实验室科技创新资助项目(LSKJ202203505-3)

Robot fish path planning method based on improved Bi-RRT algorithm

HUANG Jiankun1,2,3, XUE Gang1,2,3,4, LIU Yanjun1,2,3,4*, WANG Yu1,2,3, LI Houchi1,2,3, BAI Fagang2,3,4   

  1. 1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, Shandong, China;
    3. National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, Shandong, China;
    4. Institude of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China
  • Published:2024-02-01

摘要: 为提高机器鱼的水下路径规划效率,更好地完成水下工作,提出一种基于改进双向快速搜索随机树(bidirectional rapidly-exploring random trees, Bi-RRT)算法的机器鱼路径规划方法。以研制的混合驱动机器鱼为研究对象,介绍其结构模型和运动控制模式,为后续试验验证提供物理样机。针对Bi-RRT算法存在的采样随机、路径冗余、效率不高等问题,融合生长引导机制和连接强化机制改进Bi-RRT算法,加入生长引导机制,改善随机树生长随机、两树连接慢的问题;加入连接强化机制提高算法搜索速度。对搜索路径进行优化处理,通过剔除冗余节点、插入优化节点,改善路径质量,对路径进行平滑处理,使路径更适合机器鱼航行,实现机器鱼路径规划任务。仿真结果表明,与传统Bi-RRT算法及其他衍生快速搜索随机树(rapidly-exploring random tree, RRT)算法相比,改进的Bi-RRT算法相较于改进前节点数减少约50.8%,路径长度缩短约19%,搜索时间减少约65.3%。

关键词: 机器鱼, Bi-RRT算法, 路径规划, 节点简化, 路径平滑

中图分类号: 

  • TP242
[1] KATZSCHMANN R K, DELPRETO J, MACAURDY R, et al. Exploration of underwater life with an acoustically controlled soft robotic fish[J]. Science Robotics, 2018, 3(16): eaar3449.
[2] HU S, FENG A, SHI J, et al. Underwater gas leak detection using an autonomous underwater vehicle(robotic fish)[J]. Process Safety and Environmental Protection, 2022, 167: 89-96.
[3] CHEN G, SUN Y, HUANG J, et al. Wireless power and data transmission system of submarine cable-inspecting robot fish and its time-sharing multiplexing method[J]. Electronics, 2019, 8(8): 838.
[4] 王懿偲, 夏英凯, 朱明, 等. 水产养殖机器鱼设计与三维路径跟踪控制[J]. 华中农业大学学报, 2022, 41(4): 259-270. WANG Yicai, XIA Yingkai, ZHU Ming, et al. Aquaculture robot fish design and 3D path tracking control[J]. Journal of Huazhong Agricultural University, 2022, 41(4): 259-270.
[5] ZHAO Q, LIU S, CHEN J, et al. Fast-moving piezoelectric micro-robotic fish with double caudal fins[J]. Robotics and Autonomous Systems, 2021, 140: 103733.
[6] YAN S, WU Z, WANG J, et al. Efficient cooperative structured control for a multijoint biomimetic robotic fish[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(5): 2506-2516.
[7] CHEN B, JIANG H. Body stiffness variation of a tensegrity robotic fish using antagonistic stiffness in a kinematically singular configuration[J]. IEEE Transactions on Robotics, 2021, 37(5): 1712-1727.
[8] HESS A, TAN X, GAO T. CFD-based multi-objective controller optimization for soft robotic fish with muscle-like actuation[J]. Bioinspiration & Biomimetics, 2020, 15(3): 035004.
[9] 李连鹏, 苏中, 解迎刚, 等. 基于遗传算法的机器鱼水中路径规划[J]. 兵工自动化, 2015, 34(12): 93-96. LI Lianpeng, SU Zhong, XIE Yinggang, et al. Robot fish underwater path planning based on genetic algorithm[J]. Ordnance Industry Automation, 2015, 34(12): 93-96.
[10] CAI W, DENG Y. Global path planning of multi-robot fish based on adaptive ant colony algorithm in dynamic environment[C] //Proceedings of the 4th International Conference on Renewable Energy and Environmental Technology. Shenzhen, China: Atlantis, 2017: 74-78.
[11] TIAN Q, WANG T, WANG Y, et al. A two-level optimization algorithm for path planning of bionic robotic fish in the three-dimensional environment with ocean currents and moving obstacles[J]. Ocean Engineering, 2022, 266: 112829.
[12] YANG W, WU P, ZHOU X, et al. Improved artificial potential field and dynamic window method for amphibious robot fish path planning[J]. Applied Sciences, 2021, 11(5): 2114.
[13] HONG Q, CHEN M X, DENG Y S. Multi-robot fish path planning based on the modified A* algorithm[J]. Applied Mechanics & Materials, 2014, 568/569/570: 1054-1058.
[14] HU J, MEI J, CHEN D, et al. Path planning of robotic fish in unknown environment with improved reinforcement learning algorithm[C] //International Conference on Internet and Distributed Computing Systems. Tokyo, Japan: Springer, 2018: 248-257.
[15] LAVALLE S M. Rapidly-exploring random trees: a new tool for path planning[R].Iowa, USA: Computer Science Department, Ioua State University, 1998.
[16] CUI J. An overview of unmanned vehicle path planning algorithms[J]. Journal of Physics: Conference Series, 2019, 1345(4): 042092.
[17] 陈秋莲, 蒋环宇, 郑以君. 机器人路径规划的快速扩展随机树算法综述[J]. 计算机工程与应用, 2019, 55(16): 10-17. CHEN Qiulian, JIANG Huanyu, ZHENG Yijun. Overview of fast expanding random tree algorithms for robot path planning[J]. Computer Engineering and Applications, 2019, 55(16): 10-17.
[18] FERGUSON D, STENTZ A. Anytime RRTs[C] //Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 5369-5375.
[19] KARAMAN S, FRAZZOLI E. Incremental sampling-based algorithms for optimal motion planning[J]. Robotics Science and Systems VI, 2010, 104(2): 267-274.
[20] JEONG I B, LEE S J, KIM J H. Quick-RRT*: triangular inequality-based implementation of RRT* with improved initial solution and convergence rate[J]. Expert Systems with Applications, 2019, 123: 82-90.
[21] LAVALLE S M, KUFFNER J J. Rapidly-exploring random trees: progress and prospects[J]. Algorithmic & Computational Robotics New Directions, 2001, 20(5): 303-307.
[22] 张一帆, 史国友, 徐家晨. 基于人工势场法引导的Bi-RRT的水面无人艇路径规划算法[J]. 上海海事大学学报, 2022, 43(4): 16-22. ZHANG Yifan, SHI Guoyou, XU Jiachen, et al. A Bi-RRT based path planning algorithm for surface unmanned vehicle guided by artificial potential field method[J]. Journal of Shanghai Maritime University, 2022, 43(4): 16-22.
[23] 张瑞, 周丽, 刘正洋. 融合RRT*与DWA算法的移动机器人动态路径规划[J/OL]. 系统仿真学报.(2023-03-24)[2023-05-14]. https://doi.org/10.16182/j.issn1004731x.joss.22-1543.
[24] 朱红秀, 郑权, 杜闯, 等. 改进RRT算法用于电磁驱动机器鱼路径规划[J]. 火力与指挥控制, 2020, 45(10): 100-105. ZHU Hongxiu, ZHENG Quan, DU Chuang, et al. Improved RRT algorithm for path planning of electromagnetic driven robotic fish[J]. Fire Control and Command Control, 2020, 45(10): 100-105.
[1] 赵天怀,王目树,潘为刚,康超,秦石铭,徐飞. 挖掘机智能辅助施工系统设计[J]. 山东大学学报 (工学版), 2023, 53(4): 163-172.
[2] 王雨,刘延俊,贾华,薛钢. 基于强化RRT算法的机械臂路径规划[J]. 山东大学学报 (工学版), 2022, 52(6): 123-130.
[3] 张飞凯,黄永忠,李连茂,秦剑,刘晨. 基于Dijkstra算法的货运索道路径规划方法[J]. 山东大学学报 (工学版), 2022, 52(6): 176-182.
[4] 肖浩,廖祝华,刘毅志,刘思林,刘建勋. 实际环境中基于深度Q学习的无人车路径规划[J]. 山东大学学报 (工学版), 2021, 51(1): 100-107.
[5] 李彩虹,方春,王志强,夏斌,王凤英. 基于超混沌同步控制的移动机器人全覆盖路径规划[J]. 山东大学学报 (工学版), 2019, 49(6): 63-72.
[6] 周风余, 万方, 焦建成, 边钧健. 家庭陪护机器人自主充电系统研究与设计[J]. 山东大学学报 (工学版), 2019, 49(1): 55-65.
[7] 张强. 核环境多关节蛇形机械臂的运动控制系统设计[J]. 山东大学学报 (工学版), 2018, 48(6): 122-131.
[8] 刘彬,张仁津. 一种采用两段粒子群优化的路径规划方法[J]. 山东大学学报(工学版), 2012, 42(1): 12-18.
[9] 严宣辉, 肖国宝*. 基于定长实数路径编码机制的移动机器人路径规划[J]. 山东大学学报(工学版), 2012, 42(1): 59-65.
[10] 陈明志1,许春耀2,陈健2,余轮2. 基于语义信息的虚拟环境路径规划[J]. 山东大学学报(工学版), 2011, 41(4): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!