山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (6): 105-114.doi: 10.6040/j.issn.1672-3961.0.2021.304
Yue YUAN1(),Yanli WANG2,Kan LIU2,*()
摘要:
受到空洞卷积的启发提出面向二维文本嵌入的列式空洞卷积,设计空洞卷积块架构,基于此架构提出命名实体识别模型并开展进一步试验。在命名实体识别试验中,提出的模型的精密度、召回率和F1超越了其他基线模型,分别达到了0.918 7、0.879 4和0.898 6,表明空洞卷积块架构能够获取包含更多上下文信息的文本特征,从而支持模型对上下文长距离依赖特征的捕获和处理。感受野试验表明需要适当调整空洞率以减轻空洞卷积给模型带来的“网格效应”。提出的基于空洞卷积块架构能有效执行命名实体识别任务。
中图分类号:
1 | PANCHENDRARAJAN R, AMARESAN A. Bidirectional LSTM-CRF for named entity recognition[C]//Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation. Hong Kong, China: Association for Computational Linguistics, 2018: 531-540. |
2 | LI L , XU W , YU H . Character-level neural network model based on Nadam optimization and its application in clinical concept extraction[J]. Neurocomputing, 2020, 414 (16): 182- 190. |
3 |
SHARMA R , MORWAL S , AGARWAL B , et al. A deep neural network-based model for named entity recognition for Hindi language[J]. Neural Computing and Applications, 2020, 32 (20): 16191- 16203.
doi: 10.1007/s00521-020-04881-z |
4 | WU C , WU F , QI T , et al. Detecting entities of works for chinese chatbot[J]. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 2020, 19 (6): 1- 13. |
5 | LI X , ZHANG H , ZHOU X H . Chinese clinical named entity recognition with variant neural structures based on BERT methods[J]. Journal of Biomedical Informatics, 2020, 107 (18): 103422. |
6 | JIA C, SHI Y, YANG Q, et al. Entity enhanced bert pre-training for chinese NER[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Punta Cana, Dominica: Association for Computational Linguistics, 2020: 6384-6396. |
7 | HAN Y, YAN Y, HAN Y, et al. Chinese grammatical error diagnosis based on RoBERTa-BiLSTM-CRF model[C]//Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications. Suzhou, China: Association for Computational Lingu-istics, 2020: 97-101. |
8 | YANG Z, DAI Z, YANG Y, et al. Xlnet: generalized autoregressive pretraining for language understanding[C]// Proceedings of Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2019: 5753-5763. |
9 | DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, USA: Association for Computational Linguistics, 2019: 4171-4186. |
10 | ZHANG Z, HAN X, LIU Z, et al. ERNIE: enhanced language representation with informative entities[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational Linguistics, 2019: 1441-1451. |
11 | CHEN L C , PAPANDREOU G , KOKKINOS I , et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848. |
12 | WANG Z , JI S . Smoothed dilated convolutions for improved dense prediction[J]. Data Mining and Knowledge Discovery, 2021, 35 (4): 1- 27. |
13 | MEHTA S, RASTEGARI M, CASPI A, et al. Espnet: efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 552-568. |
14 | STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Association for Computational Linguistics, 2017: 2670-2680. |
15 | KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA: Association for Computational Linguistics, 2014: 655-665. |
16 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, USA: AISTATS, 2011: 315-323. |
17 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778. |
18 | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Tahoe City, USA: IEEE, 2018: 1451-1460. |
19 | LIPPMANN R, CAMPBELL W, CAMPBELL J. An overview of the darpa data driven discovery of models (d3m) program[C]//Proceedings of 29th Conference on Neural Information Processing Systems. Barcelona, Spain: MIT Press, 2016: 1-2. |
[1] | 李旭涛,杨寒玉,卢业飞,张玮. 基于深度学习的遥感图像道路分割[J]. 山东大学学报 (工学版), 2022, 52(6): 139-145. |
[2] | 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76. |
[3] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
[4] | 黄皓,周丽华,黄亚群,姜懿庭. 基于混合深度模型的虚假信息早期检测[J]. 山东大学学报 (工学版), 2022, 52(4): 89-98. |
[5] | 孟祥飞,张强,胡宴才,张燕,杨仁明. 欠驱动船舶自适应神经网络有限时间跟踪控制[J]. 山东大学学报 (工学版), 2022, 52(4): 214-226. |
[6] | 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41. |
[7] | 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49. |
[8] | 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98. |
[9] | 尹旭,刘兆英,张婷,李玉鑑. 基于弱监督和半监督学习的红外舰船分割方法[J]. 山东大学学报 (工学版), 2022, 52(2): 99-106. |
[10] | 蒋桐雨,陈帆,和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8, 18. |
[11] | 吴建清,宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报 (工学版), 2021, 51(5): 16-31. |
[12] | 丁飞,江铭炎. 基于改进狮群算法和BP神经网络模型的房价预测[J]. 山东大学学报 (工学版), 2021, 51(4): 8-16. |
[13] | 尹晓敏,孟祥剑,侯昆明,陈亚潇,高峰. 一种计及空间相关性的光伏电站历史出力数据的修正方法[J]. 山东大学学报 (工学版), 2021, 51(4): 118-123. |
[14] | 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21. |
[15] | 陶亮,刘宝宁,梁玮. 基于CNN-LSTM 混合模型的心律失常自动检测[J]. 山东大学学报 (工学版), 2021, 51(3): 30-36. |
|