山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 214-226.doi: 10.6040/j.issn.1672-3961.0.2021.496
• • 上一篇
孟祥飞1,张强1*,胡宴才1,张燕1,杨仁明2
MENG Xiangfei1, ZHANG Qiang1*, HU Yancai1, ZHANG Yan1, YANG Renming2
摘要: 针对受动态不确定性和外界未知干扰影响下欠驱动水面船舶的轨迹跟踪控制问题,设计一种有限时间轨迹跟踪控制方案。采用神经网络重构船舶的动态不确定性,通过引入最小学习参数降低计算复杂度,设计自适应律逼近由不确定项和外界干扰组合而成的复合扰动的上界,并基于此设计一种基于最小学习参数的欠驱动船舶自适应神经网络有限时间轨迹跟踪控制方案。通过严格的理论分析后得出,该有限时间轨迹跟踪控制方案能够使闭环系统的所有信号都趋于有界,欠驱动船舶的位姿误差和速度误差都在有限时间内收敛到一个集合。仿真和比较验证了本研究所提出的有限时间控制方案的有效性。本研究中的有限时间控制方案不仅提高了船舶的瞬态性能和稳态性能,且控制器结构简单,更容易应用在工程中。
中图分类号:
[1] 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59. WANG Changshun, XIAO Hairong. Path following controller for surface unmanned craft based on active disturbance rejection control[J]. Journal of Shandong University(Engineering Science), 2016, 46(4): 54-59. [2] ZHU G, MA Y, HU S. Single-parameter-learning-based finite-time tracking control of underactuated MSVs under input saturation[J]. Control Engineering Practice, 2020, 105. [3] 张强,张显库. 船舶自动靠泊控制研究综述[J].大连海事大学学报, 2015(41):1-9. ZHANG Qiang, ZHANG Xianku. A review of research on ship automatic berthing control[J]. Journal of Dalian Maritime University, 2015(41): 1-9. [4] LIANG K, LIN X, CHEN Y, et al. Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation[J]. Ocean Engineering, 2020, 206. [5] LV G, PENG Z, WANG H, et al. Extended-state-observer-based distributed model predictive formation control of under-actuated unmanned surface vehicles with collision avoidance[J]. Ocean Engineering, 2021, 238. [6] 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018,48(1): 42-49. LIU Zhe, SONG Rui, ZOU Tao. Control algorithm for end force tracking of grinding robot based on model predictive control[J]. Journal of Shandong University(Engineering Science), 2018, 48(1): 42-49. [7] ZHU G, MA Y, LI Z, et al. Event-triggered adaptive neural fault-tolerant control of underactuated MSVs with input saturation[J]. IEEE Transactions on Intelligent Transportation Systems, 2021(99): 1-13. [8] 祁林,渠俊锋,司文杰,等. 基于RBF神经网络的水面船舶轨迹跟踪控制[J]. 船舶工程, 2021, 43(1): 95-101. QI Lin, QU Junfeng, SI Wenjie, et al. Tracking control of surface ship based on RBF neural network[J]. Ship Engineering, 2021, 43(1): 95-101. [9] 沈智鹏,毕艳楠,王宇,等. 输入输出受限船舶的轨迹跟踪自适应递归滑模控制[J]. 控制理论与应用, 2020, 37(6): 1419-1427. SHEN Zhipeng, BI Yannan, WANG Yu, et al. Adaptive recursive sliding mode control for trajectory tracking of ships with limited input and output[J]. Control Theory and Applications, 2020, 37(6): 1419-1427. [10] 沈智鹏,张晓玲,张宁,等. 基于神经网络观测器的船舶轨迹跟踪递归滑模动态面输出反馈控制[J]. 控制理论与应用, 2018, 35(8): 1092-1100. SHEN Zhipeng, ZHANG Xiaoling, ZHANG Ning, et al. Ship trajectory tracking recursive sliding mode dynamic surface output feedback control based on neural network observer[J]. Control Theory and Applications, 2018, 35(8): 1092-1100. [11] LIU H, CHEN G. Robust trajectory tracking control of marine surface vessels with uncertain disturbances and input saturations[J]. Nonlinear Dynamics, 2020, 100(2): 1-16. [12] ZHU G, LI C, SUN Y, et al. Robust adaptive neural trajectory tracking control of surface vessels under input and output constraints[J]. Journal of the Franklin Institute, 2020, 357(13): 8591-8610. [13] KONG L H, HE W, YANG C G, et al. Adaptive fuzzy control for a marine vessel with time-varying constraints[J]. IET Control Theory and Applications, 2018, 12(10): 1448-1455. [14] 沈智鹏,王茹. 基于DSC和MLP的欠驱动船舶自适应滑模轨迹跟踪控制[J]. 系统工程与电子技术, 2018, 40(3): 643-651. SHEN Zhipeng, WANG Ru. Adaptive sliding mode trajectory tracking control for underactuated ships based on DSC and MLP[J]. Systems Engineering and Electronics, 2018, 40(3): 643-651. [15] 沈智鹏,邹天宇,王茹. 基于扩张观测器的欠驱动船舶轨迹跟踪低频学习自适应动态面输出反馈控制[J]. 控制理论与应用, 2019, 36(6): 867-876. SHEN Zhipeng, ZOU Tianyu, WANG Ru. Low-frequency learning adaptive dynamic surface output feedback control for under-actuated ship trajectory tracking based on extended observer[J]. Control Theory and Applications, 2019, 36(6): 867-876. [16] 刘勇,卜仁祥,李强. 欠驱动船舶轨迹跟踪控制设计[J]. 计算机仿真, 2019, 36(5): 6-10. LIU Yong, BU Renxiang, LI Qiang. Tracking control design of under-actuated ships[J]. Computer Integrated Manufacturing Systems, 2019, 36(5): 6-10. [17] MU D, WANG G, FAN Y. Trajectory tracking control for underactuated unmanned surface vehicle subject to uncertain dynamics and input saturation[J]. Neural Computing and Applications, 2021, 33(19): 12777-12789. [18] XIE T, LI Y, JIANG Y, et al. Backstepping active disturbance rejection control for trajectory tracking of underactuated autonomous underwater vehicles with position error constraint[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 1-12. [19] 冯辉,胡胜,余文曌,等.基于有限时间引导律的欠驱智能船舶循迹控制[J]. 北京航空航天大学学报, 2022,48(3):394-400. FENG Hui, HU Sheng, YU Wenzhao, et al. Tracking control of underdrive intelligent ship based on finite time guidance law[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022,48(3):394-400. [20] 胡明月,于双和,李云云, 等. 基于指令滤波的全状态约束海洋水面船舶有限时间轨迹跟踪控制[J]. 南京理工大学学报, 2021, 45(3): 271-280. HU Mingyue, YU Shuanghe, LI Yunyun, et al. Finite-time trajectory tracking control of ship on ocean surface under full-state constraints based on command filtering[J]. Journal of Nanjing University of Science and Technology, 2021, 45(3): 271-280. [21] 陈海力, 任鸿翔, 杨柏丞. 基于LS-SVM的船舶动力定位有限时间控制器设计[J]. 船舶工程, 2020, 42(2): 77-84. CHEN Haili, REN Hongxiang, YANG Bocheng. The design of finite-time controller for ship dynamic positioning based on LS-SVM[J]. Ship Engineering, 2020, 42(2): 77-84. [22] WANG N, AHN C K. Hyperbolic-tangent lOS guidance-based finite-time path following of underactuated marine vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8566-8575. [23] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York, USA: Wiley, 2011. [24] WANG F, CHEN B, LIU X, et al. Finite-time adaptive fuzzy tracking control design for nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1207-1216. [25] HUANG Y, JIA Y. Adaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around mission[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1796-1804. [26] ZHANG Q, ZHU G, HU X, et al. Adaptive neural network auto-berthing control of marine ships[J]. Ocean Engineering, 2019, 177(1): 40-48. [27] XU B, SHOU Y. Composite Learning control of MIMO systems with applications[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6414-6424. [28] ZHANG Q, ZHANG M, YANG R, et al. Adaptive neural finite-time trajectory tracking control of MSVs subject to uncertainties[J]. International Journal of Control Automation and Systems, 2021, 19(6): 2238-2250. [29] POLYCARPOU M M. Stable adaptive neural control scheme for nonlinear systems[J]. IEEE Transactions on Automatic Control, 2002, 41(3): 447-451. [30] 吴文涛, 古楠, 彭周华,等. 多领航者导引无人船集群的分布式时变队形控制[J].中国舰船研究, 2020(1):21-30. WU Wentao, GU Nan, PENG Zhouhua, et al. Distributed time-varying formation control of unmanned ship cluster guided by multiple pilots[J]. Chinese Journal of Ship Research, 2020(1): 21-30. [31] SKJETNE R, FOSSEN T I, KOKOTOVI P V. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory[J]. Automatica, 2005, 41(2): 289-298. [32] DENG Y, ZHANG X, IM N, et al. Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(10): 4001-4014. |
[1] | 刘友权,王晨光,侍红军. 主从Cucker-Smale系统的有限时间蜂拥行为[J]. 山东大学学报 (工学版), 2018, 48(5): 61-68. |
[2] | 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53. |
[3] | 周绍伟. 随机Markov跳跃系统有限时间稳定性[J]. 山东大学学报(工学版), 2016, 46(2): 78-84. |
[4] | 李小华, 严慰, 刘洋. 广义扩展大系统的鲁棒分散有限时间关联镇定[J]. 山东大学学报(工学版), 2015, 45(6): 16-28. |
[5] | 仝云旭, 李桂花, 刘婷婷, 朱玉清. 离散时间线性脉冲奇异系统的有限时间滤波[J]. 山东大学学报 (工学版), 2015, 45(5): 51-57. |
[6] | 沈艳军1,吴超艳2. 一类链式系统部分变元渐近稳定、有限时间稳定观测器设计[J]. 山东大学学报(工学版), 2013, 43(6): 42-46. |
[7] | 李望1,2,石咏2,马继伟2. 复杂动力学网络的有限时间外部同步[J]. 山东大学学报(工学版), 2013, 43(2): 48-53. |
[8] | 赵占山1,2, 张静3, 孙连坤1, 丁刚1. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4): 74-78. |
[9] | 杨仁明,王玉振*. 一类非线性时滞系统的有限时间稳定性[J]. 山东大学学报(工学版), 2012, 42(2): 36-44. |
[10] | 马世敏,王玉振. 一类广义Hamilton系统的有限时间稳定性及其在仿射非线性系统控制设计中的应用[J]. 山东大学学报(工学版), 2011, 41(2): 119-125. |
[11] | 乔伟1,王汇源1,2,吴晓娟1,刘鹏威1. 基于混沌动力学模型的群体目标检测与分类[J]. 山东大学学报(工学版), 2010, 40(2): 19-23. |
[12] | 邓修成,沈艳军,方胜乐 . 多输入-多输出线性系统有限时间观测器设计方法[J]. 山东大学学报(工学版), 2008, 38(4): 17-21 . |
[13] | 辛道义,刘允刚 . 非线性系统有限时间稳定性分析与控制设计[J]. 山东大学学报(工学版), 2007, 37(3): 24-30 . |
[14] | 丁玉琴,刘允刚 . 一类非线性系统有限时间函数观测器设计方法[J]. 山东大学学报(工学版), 2007, 37(1): 56-60 . |
|