山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 80-87.doi: 10.6040/j.issn.1672-3961.0.2018.268
Jiachen WANG1(),Xianghong TANG1,2,3,*(),Jianguang LU1,2,3
摘要:
针对轴承故障诊断建模中如何通过筛选有效特征提高模型诊断准确率的问题,提出一种新的特征选取方法。在计算所得特征集合中,利用诊断模型直接对特征进行判断,将高于阈值的诊断准确率对应的特征(组合)选取为显著特征,以显著特征导向选取方式,找到候选特征集合中维度低、诊断准确率高的特征。试验结果表明,本研究提出的方法可筛选出有效特征,降低模型参数、减少样本需求量、提高模型准确率,提升了故障诊断的效率。
中图分类号:
1 | 张美玲, 胡晓. 基于LCD和改进SVM的轴承故障诊断方法[J]. 测控技术与仪器仪表, 2016, 6, 81- 83. |
ZHANG Meiling , HU Xiao . Fault diagnosis method of rolling bearing based on LCD and improved SVM[J]. Measurement Control Technology and Instruments, 2016, (6): 81- 83. | |
2 | 许凡, 方彦军, 张荣. 基于EEMD模糊熵的PCA-GG滚动轴承聚类故障诊断[J]. 计算机集成制造系统, 2016, 22 (11): 2631- 2642. |
XU Fan , FANG Yanjun , ZHANG Rong . PCA-GG rolling bearing clustering fault diagnosis based on EEMD fuzzy entropy[J]. Computer Integrated Manufacturing System, 2016, 22 (11): 2631- 2642. | |
3 |
LI Shaobo , LIU Guokai , TANG Xianghong , et al. An nsemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis[J]. Sensors, 2017, 17 (8): 1729- 1748.
doi: 10.3390/s17081729 |
4 | 张钰, 陈珺, 王晓峰, 等. 随机森林在滚动轴承故障诊断中的应用[J]. 计算机工程与应用, 2017, (5): 1- 7. |
ZHANG Yu , CHEN Jun , WANG Xiaofeng , et al. Application of randomforest on rolling element bearings fault diagnosis[J]. Computer Engineering and Applications, 2017, (5): 1- 7. | |
5 | 马萍, 张宏立, 范文慧. 基于局部与全局结构保持算法的滚动轴承故障诊断[J]. 机械工程学报, 2017, 53 (2): 20- 25. |
MA Ping , ZHANG Hongli , FAN Wenhui . Fault diagnosis of rolling bearings based on local and global preserving embedding algorithm[J]. Joural of Mechanical Engineer, 2017, 53 (2): 20- 25. | |
6 |
VAKHARIA V , GUPTA VK , KANKAR PK . Efficient fault diagnosis of ball bearing using reliefF and random forest classifier[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39 (8): 2969- 2982.
doi: 10.1007/s40430-017-0717-9 |
7 | 朱瑜, 王殿, 王海洋. 基于EMD和信息熵的滚动轴承故障诊断[J]. 轴承, 2012, (6): 50- 53. |
ZHU Yu , WANG Dian , WANG Haiyang . Rolling bearing fault diagnosis based on EMD and information entropy[J]. Bearings, 2012, (6): 50- 53. | |
8 | 许凡, 方彦军, 张荣. 基于EEMD模糊熵的PCA-GG滚动轴承聚类故障诊断[J]. 计算机集成制造系统, 2016, 22 (11): 2631- 2642. |
XU Fan , FANG Yanjun , ZHANG Rong . PCA-GG rolling bearing clustering fault diagnosis based on EEMD fuzzy entropy[J]. Computer Integrated Manufacturing System, 2016, 22 (11): 2631- 2642. | |
9 |
杨宇, 潘海洋, 程军圣. 基于特征选择和RRVPMCD的滚动轴承故障诊断方法[J]. 振动工程学报, 2014, 27 (4): 629- 636.
doi: 10.3969/j.issn.1004-4523.2014.04.020 |
YANG Yu , PAN Haiyang , WEI Junsheng . The rolling bearing fault diagnosis method based on the feature selection and RRVPMCD[J]. Journal of Vibration Engineer, 2014, 27 (4): 629- 636.
doi: 10.3969/j.issn.1004-4523.2014.04.020 |
|
10 | 刘蕴哲, 胡金海, 任立通, 等. 基于特征选择与概率神经网络的轴承故障诊断研究[J]. 机械传动, 2016, 40 (10): 48- 53. |
LIU Yunzhe , HU Jinhai , REN Litong , et al. Study on the bearing fault diagnosis based on feature selection and probabilistic neural network[J]. Journal of Mechanical Transmission, 2016, 40 (10): 48- 53. | |
11 |
苏祖强, 汤宝平, 姚金宝. 基于敏感特征选择与流形学习维数约简的故障诊断[J]. 振动与冲击, 2014, 33 (3): 70- 75.
doi: 10.3969/j.issn.1000-3835.2014.03.015 |
SU Zuqiang , TANG Baoping , YAO Jinbao . Fault diagnosis method based on sensitive feature selection and manifold learning dimension reduction[J]. Journal of Vibration and Shock, 2014, 33 (3): 70- 75.
doi: 10.3969/j.issn.1000-3835.2014.03.015 |
|
12 |
LI Yun , LI Tao , LIU Huan . Recent advances in feature selection and its applications[J]. Knowledge and Information System, 2017, 53 (3): 551- 577.
doi: 10.1007/s10115-017-1059-8 |
13 | 李敏, 卡米力·木依丁. 特征选择方法与算法的研究[J]. 计算机技术与发展, 2013, 23 (12): 16- 21. |
LI Min , KAMIL Moydi . Research on feature selection methods and algorithms[J]. Computer Technology and Development, 2013, 23 (12): 16- 21. | |
14 | 王新, 闫文源. 基于变分模态分解和SVM的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36 (18): 252- 256. |
WANG Xin , YAN Wenyuan . Fault diagnosis of roller bearings based on the variational mode decomposition and SVM[J]. Journal of Vibration and Shock, 2017, 36 (18): 252- 256. | |
15 | 陈法法, 杨晶晶, 肖文荣, 等. Adaboost_SVM集成模型的滚动轴承早期故障诊断[J]. 机械科学与技术, 2018, 37 (2): 237- 243. |
CHEN Fafa , YANG Jingjing , XIAO Wenrong , et al. Early fault diagnosis of rolling bearing based on ensemble model of adaboost SVM[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37 (2): 237- 243. | |
16 |
黄勇, 郑春颖, 宋忠虎. 多类支持向量机算法综述[J]. 计算技术与自动化, 2005, (4): 61- 63.
doi: 10.3969/j.issn.1003-6199.2005.04.020 |
HUANG Yong , ZHENG Chunying , SONG Zhonghu . Multi-class support vector machines algorithm summarization[J]. Computing Technology and Automation, 2005, (4): 61- 63.
doi: 10.3969/j.issn.1003-6199.2005.04.020 |
|
17 | 肖晓, 张敏. 支持向量机多分类问题研究[J]. 淮海工学院学报(自然科学版), 2014, 23 (3): 28- 31. |
XIAO Xiao , ZHANG Min . Research on the multi-class classification problem of support vector machine[J]. Journal of Huaihai Institute of Technology (Natural Science Edition), 2014, 23 (3): 28- 31. | |
18 |
付阳, 李昆仑. 支持向量机模型参数选择方法综述[J]. 电脑知识与技术, 2010, 6 (28): 8081- 80828085.
doi: 10.3969/j.issn.1009-3044.2010.28.077 |
FU Yang , LI Kunlun . A survey of model parameters selection method for support vector machines[J]. Computer Knowledge and Technology, 2010, 6 (28): 8081- 80828085.
doi: 10.3969/j.issn.1009-3044.2010.28.077 |
|
19 | 王玉静, 康守强, 张云, 等. 基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法[J]. 电子与信息学报, 2014, 36 (3): 595- 600. |
WANG Yujing , KANG Shouqiang , ZHANG Yun , et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics and Information Technology, 2014, 36 (3): 595- 600. |
[1] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
[2] | 许传臻,袭肖明,李维翠,孙仪,杨璐. 基于自适应多分辨率特征学习的CNV分型网络[J]. 山东大学学报 (工学版), 2022, 52(4): 69-75. |
[3] | 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44. |
[4] | 闵海根,方煜坤,吴霞,王武祺. 网联交通环境下的车-车通信故障诊断方法[J]. 山东大学学报 (工学版), 2021, 51(6): 84-92. |
[5] | 彭岩,冯婷婷,王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报 (工学版), 2020, 50(4): 1-7. |
[6] | 陈红,杨小飞,万青,马盈仓. 基于相关熵和流形学习的多标签特征选择算法[J]. 山东大学学报 (工学版), 2018, 48(6): 27-36. |
[7] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37. |
[8] | 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101. |
[9] | 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80. |
[10] | 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21. |
[11] | 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109. |
[12] | 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14. |
[13] | 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70. |
[14] | 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122. |
[15] | 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214. |
|