山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 74-79.doi: 10.6040/j.issn.1672-3961.0.2018.273
Xiaoxiong HOU1,2(),Xinzheng XU1,2,*(),Jiong ZHU1,Yanyan GUO1
摘要:
为解决在计算机辅助诊断(computer aided diagnosis, CAD)中采用人工提取医学影像特征的弊端,在ImageNet数据集上预训练深度神经网络模型Alexnet,通过迁移学习再训练后的Alexnet模型对医学影像进行特征提取,利用集成学习方法训练分类器进行分类。试验结果表明,基于Alexnet和随机森林方法的分类器正确率达到了0.87±0.03,集成分类器的分类性能优于单一分类器。
中图分类号:
1 |
BUNGE R E , HERMAN C L . Usage of diagnostic imaging procedures: a nationwide hospital study[J]. Radiology, 1987, 163 (2): 569- 573.
doi: 10.1148/radiology.163.2.3550886 |
2 |
SLUIMER I , SCHILHAM A , PROKOP M , et al. Computer analysis of computed tomography scans of the lung: a survey[J]. IEEE Trans Med Imaging, 2006, 25 (4): 385- 405.
doi: 10.1109/TMI.2005.862753 |
3 |
QUEKEL L G , KESSELS A G , GOEI R , et al. Miss rate of lung cancer on the chest radiograph in clinical practice[J]. Chest, 1999, 115 (3): 720- 724.
doi: 10.1378/chest.115.3.720 |
4 |
LI F , SONE S , ABE H , et al. Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings[J]. Radiology, 2002, 225 (3): 673- 683.
doi: 10.1148/radiol.2253011375 |
5 |
DOI K , MACMAHON H , KATSURAGAWA S , et al. Computer-aided diagnosis in radiology: potential and pitfalls[J]. European Journal of Radiology, 1999, 31 (2): 97- 109.
doi: 10.1016/S0720-048X(99)00016-9 |
6 |
GIGER M L , CHAN H P , BOONE J . Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM[J]. Medical Physics, 2008, 35 (12): 5799- 5820.
doi: 10.1118/1.3013555 |
7 |
LI Q , LI F , SUZUKI K , et al. Computer-aided diagnosis in thoracic CT[J]. Seminars in Ultrasound, CT and MRI, 2005, 26 (5): 357- 363.
doi: 10.1053/j.sult.2005.07.001 |
8 |
HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18 (7): 1527- 1554.
doi: 10.1162/neco.2006.18.7.1527 |
9 |
MCLOUGHLIN K J , BONES P J , KARSSEMEIJER N . Noise equalization for detection of microcalcification clusters in direct digital mammogram images[J]. IEEE Transactions on Medical Imaging, 2004, 23 (3): 313- 320.
doi: 10.1109/TMI.2004.824240 |
10 | TALHA M , SULONG G B , JAFFAR A . Preprocessing digital breast mammograms using adaptive weighted frost filter[J]. Biomedical Research, 2016, 27 (4): 1407- 1412. |
11 | PONRAJ D N , JENIFER M E , POONGODI P , et al. A survey on the preprocessing techniques of mammogram for the detection of breast cancer[J]. Journal of Emerging Trends in Computing & Information Sciences, 2011, 2 (12): 656- 664. |
12 |
MAKANDAR A , HALALLI B . Pre-processing of mammography image for early detection of breast bancer[J]. International Journal of Computer Applications, 2016, 144 (3): 11- 15.
doi: 10.5120/ijca2016910153 |
13 | RAMANI R , VANITHA N S , VALARMATHY S . The pre-processing techniques for breast cancer detection in mammography images[J]. International Journal of Image Graphics & Signal Processing, 2013, 5 (5): 47- 54. |
14 | MUSTRA M , GRGIC M , RANGAYYAN R M . Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammograms[J]. Medical & Biological Engineering & Computing, 2016, 54 (7): 1003- 1024. |
15 | MAKANDAR A , HALALLI B . Breast cancer image enhancement using median filter and clahe[J]. International Journal of Scientific & Engineering Research, 2015, 6 (4): 462- 465. |
16 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Vancouver, Canada: Neural Information Processing Systems Foundation, 2012: 1097-1105. |
17 | DONAHUE J, JIA Y, VINYALS O, et al. DeCAF: a deep convolutional activation feature for generic visual recognition[J]. arXiv: 1310.1531 [cs.CV], 2013: 1-10. |
18 | RUSSAKOVSKY O , DENG J , SU H , et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2014, 115 (3): 211- 252. |
19 | BREIMAN L . Random Forest[J]. Machine Learning, 2001, 45 (1): 5- 32. |
20 | BREIMAN L . Bagging predictors[J]. Machine Learning, 1996, 24 (2): 123- 140. |
21 | AREVALO J , GONZ LEZ F A , RAMOS-POLL N R , et al. Representation learning for mammography mass lesion classification with convolutional neural networks[J]. Computer Methods & Programs in Biomedicine, 2016, 127 (C): 248- 257. |
[1] | 李力钊,蔡国永,潘角. 基于C-GRU的微博谣言事件检测方法[J]. 山东大学学报 (工学版), 2019, 49(2): 102-106, 115. |
[2] | 张成彬,赵慧,曹宗钰. 基于深度学习的车身网络KWP2000协议漏洞挖掘[J]. 山东大学学报 (工学版), 2019, 49(2): 17-22. |
[3] | 权稳稳,林明星. CNN特征与BOF相融合的水下目标识别算法[J]. 山东大学学报 (工学版), 2019, 49(1): 107-113. |
[4] | 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84. |
[5] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54. |
[6] | 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95. |
[7] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[8] | 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33. |
[9] | 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56. |
[10] | 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37. |
[11] | 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47. |
[12] | 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25. |
[13] | 徐姗姗,刘应安*,徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28. |
|