山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (6): 27-36.doi: 10.6040/j.issn.1672-3961.0.2018.264
Hong CHEN(),Xiaofei YANG*(),Qing WAN,Yingcang MA
摘要:
从相关熵的角度出发,提出一种基于相关熵和特征流形学习的稀疏正则化方法,用于解决多标签特征选择问题。在相关熵定义的基础上给出多标签特征选择的回归模型;结合?2, 1范数的性质和特征流形学习的定义建立基于相关熵和特征流形学习的稀疏正则化多标签特征选择模型及算法;证明该算法的收敛性并且通过试验验证所给算法的有效性。
中图分类号:
1 | KONG X N , YU P S . GMLC: a multi-label feature selection framework for graph classification[J]. Knowledge & Information Systems, 2012, 31 (2): 281- 305. |
2 | OZONAT K, YOUNG D. Towards a universal marketplace over the web: statistical multi-label classification of service provider forms with simulated annealing[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 1295-1304. |
3 |
LIU W , POKHAREL P P , PRINCIPE J C . Correntropy: properties and applications in non-gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55 (11): 5286- 5298.
doi: 10.1109/TSP.2007.896065 |
4 | 李素姝, 王士同, 李滔, 等. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47 (3): 34- 42. |
LI Sushu , WANG Shitong , LI Tao , et al. Feature selection method based on LS-SVM and fuzzy complement criterion[J]. Journal of Shandong University(Engineering Edition), 2017, 47 (3): 34- 42. | |
5 | HE R , ZHENG W S , HU B G . Maximum correntropy criterion for robust face recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33 (8): 1561- 1576. |
6 |
HE R , HU B G , ZHENG W S , et al. Robust principal component analysis based on maximum correntropy criterion[J]. IEEE Transactions on Image Processing, 2011, 20 (6): 1485- 1494.
doi: 10.1109/TIP.2010.2103949 |
7 | CHEN X B , YANG J , LIANG J , et al. Recursive robust least squares support vector regression based on maximum correntropy criterion[J]. Neurocomputing, 2012, 97 (1): 63- 73. |
8 |
LEE J , LIM H , KIM D W . Approximating mutual information for multi-label feature selection[J]. Electronics Letters, 2012, 48 (15): 929- 930.
doi: 10.1049/el.2012.1600 |
9 | ZHENG W S, WANG L, TAN T, et al. L2, 1 regularized correntropy for robust feature selection[J]. 2012, 157(10): 2504-2511. |
10 | 莫小勇, 潘志松, 邱俊洋, 等. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46 (4): 21- 27. |
MO Xiaoyong , PAN Zhisong , QIU Junyang , et al. Network flow anomaly detection based on online feature selection[J]. Journal of Shandong University(Engineering Edition), 2017, 47 (3): 34- 42. | |
11 | NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint L2, 1-norms minimization[C]//International Conference on Neural Information Processing Systems. Sydney, Australia: Curran Associates Inc, 2010: 1813-1821. |
12 | YANG Y, SHEN H T, MA Z, et al. L2, 1-norm regularized discriminative feature selection for unsupervised learning[C]//International Joint Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press, 2011: 1589-1594. |
13 | BELKIN M , NIYOGI P . Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Advances in Neural Information Processing Systems, 2001, 14 (6): 585- 591. |
14 | GU Q Q, ZHOU J. Co-clustering on manifolds[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 359-368. |
15 |
CHEN B D , XING L , WANG X , et al. Robust learning with kernel mean p-power error loss[J]. IEEE Transactions on Cybernetics, 2018, 48 (7): 2101- 2113.
doi: 10.1109/TCYB.2017.2727278 |
16 |
ZHANG M L , ZHOU Z H . ML-KNN: A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40 (7): 2038- 2048.
doi: 10.1016/j.patcog.2006.12.019 |
17 |
BOUTELL M R , LUO J , SHEN X , et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37 (9): 1757- 1771.
doi: 10.1016/j.patcog.2004.03.009 |
18 | TROHIDIS K , TSOUMAKAS G , KALLIRIS G , et al. Multilabel classification of music into emotions[J]. Blood, 2008, 90 (9): 3438- 3443. |
19 | ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//International Conference on Neural Information Processing Systems: Natural and Synthetic. Cambridge, USA: MIT Press, 2001: 681-687. |
20 | KLIMT B, YANG Y. The enron corpus: a new dataset for email classification research[C]//European Conference on Machine Learning. Berlin, Germany: Springer-Verlag, 2004: 217-226. |
21 |
LEE J , KIM D W . Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters, 2013, 34 (3): 349- 357.
doi: 10.1016/j.patrec.2012.10.005 |
22 | LIN Y J , HU Q H , LIU J H , et al. Multi-label feature selection based on max-dependency and min-redundancy[J]. Neurocomputing, 2015, 168 (C): 92- 103. |
23 |
LEE J , KIM D W . Fast multi-label feature selection based on information-theoretic feature ranking[J]. Pattern Recognition, 2015, 48 (9): 2761- 2771.
doi: 10.1016/j.patcog.2015.04.009 |
24 | DUDA J. Supervised and unsupervised discretization of continuous features[C]//Twelfth International Conference on Machine Learning. Sydney, Australia: ICML, 1995: 194-202. |
[1] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37. |
[2] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[3] | 方昊,李云. 基于多次随机欠采样和POSS方法的软件缺陷检测[J]. 山东大学学报(工学版), 2017, 47(1): 15-21. |
[4] | 莫小勇,潘志松,邱俊洋,余亚军,蒋铭初. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46(4): 21-27. |
[5] | 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014, 44(6): 15-18. |
[6] | 魏小敏,徐彬,关佶红. 基于递归特征消除法的蛋白质能量热点预测[J]. 山东大学学报(工学版), 2014, 44(2): 12-20. |
[7] | 潘冬寅,朱发,徐昇,业宁*. 结肠癌基因表达谱的特征选取研究[J]. 山东大学学报(工学版), 2012, 42(2): 23-29. |
[8] | 李霞1,王连喜2,蒋盛益1. 面向不平衡问题的集成特征选择[J]. 山东大学学报(工学版), 2011, 41(3): 7-11. |
[9] | 尤鸣宇,陈燕,李国正. 不均衡问题中的特征选择新算法:Im-IG[J]. 山东大学学报(工学版), 2010, 40(5): 123-128. |
[10] | 阳爱民1,周咏梅1,邓河2,周剑峰3. 一种网络流量分类特征的产生及选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 1-7. |
[11] | 谭台哲,梁应毅,刘富春. 一种ReliefF特征估计方法在无监督流形学习中的应用[J]. 山东大学学报(工学版), 2010, 40(5): 66-71. |
[12] | 戴平,李宁*. 一种基于SVM的快速特征选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 60-65. |
[13] | 王法波,许信顺. 文本分类中一种新的特征选择方法[J]. 山东大学学报(工学版), 2010, 40(4): 8-11. |
|