您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 75-82.doi: 10.6040/j.issn.1672-3961.0.2018.540

• 控制科学与工程 • 上一篇    下一篇

基于改进粒子群算法作业车间调度问题的优化

刘洪铭(),曾鸿雁,周伟*(),王涛   

  1. 成都理工大学自动化工程学院, 四川 成都 610059
  • 收稿日期:2018-12-18 出版日期:2019-02-01 发布日期:2019-03-01
  • 通讯作者: 周伟 E-mail:1270078949@qq.com;zhouwei@cdut.edu.cn
  • 作者简介:刘洪铭(1998—),男,山东临沂人,主要研究方向为测控技术与仪器、智能算法. E-mail:1270078949@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11675028)

Optimization of job shop scheduling based on improved particle swarm optimization algorithm

Hongming LIU(),Hongyan ZENG,Wei ZHOU*(),Tao WANG   

  1. College of Automation Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
  • Received:2018-12-18 Online:2019-02-01 Published:2019-03-01
  • Contact: Wei ZHOU E-mail:1270078949@qq.com;zhouwei@cdut.edu.cn
  • Supported by:
    国家自然科学基金资助项目(11675028)

摘要:

针对作业车间调度问题,提出一种基于自适应权重和混沌的改进粒子群优化算法。构建以机器加工时间最短为优化目标的多约束作业车间调度模型,采用基于工序排列的编码方式得到粒子参数与工序序列的映射关系;基于自适应权重改进粒子群算法中的惯性系数和加速因子,使得算法可以根据适应度值动态调整参数因子;采用反向学习策略改善种群初始解的质量;引入莱维飞行、变邻域搜索、混沌,增强了算法的搜索能力,避免陷入局部最优解。试验结果表明:改进粒子群算法可以有效地提高粒子利用率,平衡全局搜索与局部搜索能力,改善传统粒子群算法易早熟的缺点,得到更优的解。

关键词: 作业车间调度, 自适应权重, 混沌, 莱维飞行, 粒子群优化

Abstract:

An improved particle swarm optimization algorithm was proposed based on adaptive weights and chaos aiming at the job shop scheduling. A multiple constrained job shop scheduling model was built with the shortest machining time as the optimization goal. The mapping relationship between particle parameters and operation sequences was obtained by coding method based on ranked order value. The inertial coefficient and acceleration factor in the particle swarm optimization algorithm were improved based on the adaptive weights, so that the algorithm could dynamically adjust parameters based on the fitness value. The reverse learning was used to improve the quality of initial solution. Considering the problem of local optimum, some measures were used to enhance the search of algorithm, such as Lévy flight, variable neighborhood search and chaos. The results showed that improved particle swarm optimization could effectively improve utilization of particles, balance the global search and local search, avoid the premature convergence of the traditional particle swarm optimization algorithm, and get better results.

Key words: job shop scheduling, adaptive weights, chaos, Lévy flight, particle swarm optimization

中图分类号: 

  • TP391

图1

改进粒子群算法流程图"

表1

IPSO与PSO算法测试结果对比表"

实例 问题规模 已知最优解/s IPSO PSO 最小值提升率/% 平均值提升率/%
最小值/ s 平均值/ s 寻优成功率/% 最小值/ s 平均值/ s 寻优成功率/%
FT06 6×6 55 55 55 100 56 58 0 1.79 5.17
FT10 10×10 930 975 1 027 0 1 075 1 196 0 9.30 14.13
FT20 20×5 1 165 1 206 1 222 0 1 429 1 526 0 15.6 19.92
LA01 10×5 666 666 666 100 666 709 5 0 4.58
LA06 15×5 926 926 926 100 926 938 35 0 1.28
LA11 20×5 1 222 1 222 1 222 100 1 222 1 259 15 0 2.94
LA16 10×10 945 973 1 011 0 1 043 1 118 0 9.40 9.57

图2

IPSO与PSO算法寻优曲线对照图"

1 RUDOLPH G . Convergence analysis of canonical genetic algorithms[J]. IEEE Transactions on Neural Networks, 1994, 5 (1): 96- 101.
doi: 10.1109/72.265964
2 BHOSALE K C , PAWAR P J . Material flow optimization of flexible manufacturing system using real coded genetic algorithm(RCGA)[J]. Materials Today Proceedings, 2018, 5 (2): 7160- 7167.
doi: 10.1016/j.matpr.2017.11.381
3 CRUZCHÁVEZ M A , MARTÍNEZRANGEL M G , CRUZROSALES M H . Accelerated simulated annealing algorithm applied to the flexible job shop scheduling problem[J]. International Transactions in Operational Research, 2017, 24 (5): 1119- 1137.
doi: 10.1111/itor.2017.24.issue-5
4 BERTSIMAS D , TSITSIKLIS J . Simulated annealing[J]. Statistical Science, 1993, 8 (1): 10- 15.
doi: 10.1214/ss/1177011077
5 陈知美, 顾幸生. 基于蚁群算法的不确定条件下的Job Shop调度[J]. 山东大学学报(工学版), 2005, 35 (4): 74- 79.
doi: 10.3969/j.issn.1672-3961.2005.04.018
CHEN Zhimei , GU Xingsheng . Job shop scheduling with uncertain processing time based on ant colony system[J]. Journal of Shandong University (Engineering Science), 2005, 35 (4): 74- 79.
doi: 10.3969/j.issn.1672-3961.2005.04.018
6 DORIGO M , BIRATTARI M , STUTZLE T . Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2007, 1 (4): 28- 39.
7 NIU Qun , JIAO Bin , GU Xingsheng . Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time[J]. Applied Mathematics and Computation, 2008, 205 (1): 148- 158.
doi: 10.1016/j.amc.2008.05.086
8 DU Hui , LIU Dacheng , ZHANG Mianhao , et al. A hybrid algorithm based on particle swarm optimization and artificial immune for an assembly job shop scheduling problem[J]. Mathematical Problems in Engineering, 2016, 2016 (2): 1- 10.
9 AMIN J , MOHAMMAD A S , REZA T M . A hybrid algorithm based on particle swarm optimization and simulated annealing for a periodic job shop scheduling problem[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54 (1/4): 309- 322.
10 DONG Wenyong , KANG Lanlan , ZHANG Wensheng . Opposition-based particle swarm optimization with adaptive mutation strategy[J]. Soft Computing, 2017, 21 (17): 5081- 5090.
doi: 10.1007/s00500-016-2102-5
11 MAY B R . Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261 (5560): 459- 467.
doi: 10.1038/261459a0
12 WANG H , WU Z , RAHNAMAYAN S , et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181 (20): 4699- 4714.
doi: 10.1016/j.ins.2011.03.016
13 李荣雨, 王颖. 基于莱维飞行的改进粒子群算法[J]. 系统仿真学报, 2017, 29 (8): 1685- 1691, 1701.
LI Rongyu , WANG Ying . Improved particle swarm optimization based on Lévy flights[J]. Journal of System Simulation, 2017, 29 (8): 1685- 1691, 1701.
14 姜天华. 猫群优化算法求解柔性作业车间调度问题[J]. 计算机工程与应用, 2018, 54 (23): 259- 263, 270.
doi: 10.3778/j.issn.1002-8331.1708-0297
JIANG Tianhua . Cat swarm optimization for solving flexible job shop scheduling problem[J]. Computer Engineering and Applications, 2018, 54 (23): 259- 263, 270.
doi: 10.3778/j.issn.1002-8331.1708-0297
15 RATNAWEERA A , HALGAMUGE S K , WATSON H C . Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240- 255.
16 BEAN J . Genetic algorithms and random keys for sequencing and optimization[J]. Orsa Journal on Computing, 1994, 6 (2): 154- 160.
doi: 10.1287/ijoc.6.2.154
17 张飞, 耿红琴. 基于混沌粒子群算法的车间作业调度优化[J]. 山东大学学报(工学版), 2013, 43 (3): 19- 22, 37.
ZHANG Fei , GENG Hongqin . Optimization of job shop scheduling problem based on chaos particle swarm optimization algorithm[J]. Journal of Shandong University(Engineering Science), 2013, 43 (3): 19- 22, 37.
18 ELGOHARY A , ALRUZAIZA A S . Chaos and adaptive control in two prey, one predator system with nonlinear feedback[J]. Chaos Solitons & Fractals, 2007, 34 (2): 443- 453.
19 OUYANG X , ZHOU Y , LUO Q , et al. A novel discrete cuckoo search algorithm for spherical traveling salesman problem[J]. Applied Mathematics & Information Sciences, 2013, 7 (2): 777- 784.
20 YANG X S , KARAMANOGLU M , HE X . Flower pollination algorithm: a novel approach for multiobjective optimization[J]. Engineering Optimization, 2014, 46 (9): 1222- 1237.
doi: 10.1080/0305215X.2013.832237
21 HANSEN P , MLADENOVIC N . Variable neighborhood search: principles and applications[J]. European Journal of Operational Research, 2001, 130 (3): 449- 467.
doi: 10.1016/S0377-2217(00)00100-4
22 潘全科, 王文宏, 朱剑英, 等. 基于粒子群优化和变邻域搜索的混合调度算法[J]. 计算机集成制造系统, 2007, 13 (2): 323- 328.
doi: 10.3969/j.issn.1006-5911.2007.02.019
PAN Quanke , WANG Wenhong , ZHU Jianying , et al. Hybrid heuristics based on particle swarm optimization and variable neighborhood search for job shop scheduling[J]. Computer Integrated Manufacturing Systems, 2007, 13 (2): 323- 328.
doi: 10.3969/j.issn.1006-5911.2007.02.019
23 钱晓雯. 求解作业车间调度问题的变邻域动态烟花算法[J]. 实验室研究与探索, 2018, 37 (1): 19- 21, 124.
doi: 10.3969/j.issn.1006-7167.2018.01.006
QIAN Xiaowen . Dynamic fireworks algorithm based on variable neighborhood search for job shop scheduling problem[J]. Research and Exploration in Laboratory, 2018, 37 (1): 19- 21, 124.
doi: 10.3969/j.issn.1006-7167.2018.01.006
24 姚远远, 叶春明. 求解作业车间调度问题的改进混合灰狼优化算法[J]. 计算机应用研究, 2018, 35 (5): 1310- 1314.
doi: 10.3969/j.issn.1001-3695.2018.05.007
YAO Yuanyuan , YE Chunming . Solving job shop scheduling problem using improved hybrid grey wolf optimizer[J]. Application Research of Computers, 2018, 35 (5): 1310- 1314.
doi: 10.3969/j.issn.1001-3695.2018.05.007
25 BEASLEY J E. OR-Library[DB/OL]. (2004-09-07)[2018-10-24]. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt.
[1] 刘萌,徐陶阳,李常刚,吴越,王智,史方芳,苏建军,张国辉,李宽. 基于粒子群算法的受端电网紧急切负荷优化[J]. 山东大学学报 (工学版), 2019, 49(1): 120-128.
[2] 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报 (工学版), 2018, 48(5): 85-90.
[3] 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54.
[4] 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60.
[5] 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116.
[6] 毛北行,程春蕊. 分数阶Victor-Carmen混沌系统的自适应滑模控制[J]. 山东大学学报(工学版), 2017, 47(4): 31-36.
[7] 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88.
[8] 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79-83.
[9] 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59.
[10] 刘志军. 基于复合混沌与仿射变换的彩色图像加密算法[J]. 山东大学学报(工学版), 2016, 46(4): 1-8.
[11] 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51.
[12] 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9.
[13] 张君捧, 张庆范, 杨红娟. 基于块特征和混沌序列的图像篡改检测与恢复[J]. 山东大学学报(工学版), 2014, 44(6): 63-69.
[14] 花景新, 薄煜明, 陈志敏. 基于改进粒子群优化神经网络的房地产市场预测[J]. 山东大学学报(工学版), 2014, 44(4): 22-30.
[15] 张飞,耿红琴. 基于混沌粒子群算法的车间作业调度优化[J]. 山东大学学报(工学版), 2013, 43(3): 19-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[4] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22 -26 .
[5] 李善评,赵玉晓,乔鹏,冯正志 . 好氧颗粒污泥的培养及基质降解和污泥生长动力学分析[J]. 山东大学学报(工学版), 2008, 38(3): 95 -98 .
[6] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[7] 李新平 代翼飞 胡静. 某岩溶隧道围岩稳定性及涌水量预测的流固耦合分析[J]. 山东大学学报(工学版), 2009, 39(4): 1 -6 .
[8] 丁万涛 李术才 张庆松. TSP预报倾斜岩层分界面误差规律性探讨[J]. 山东大学学报(工学版), 2009, 39(4): 57 -60 .
[9] 王佰伟,曹升乐 . 工业废水治理效果多目标评价方法研究[J]. 山东大学学报(工学版), 2007, 37(3): 89 -92 .
[10] 高阳 张庆松 原小帅 许振浩 刘斌. 地质雷达在岩溶隧道超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4): 82 -86 .