山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 75-82.doi: 10.6040/j.issn.1672-3961.0.2018.540
Hongming LIU(
),Hongyan ZENG,Wei ZHOU*(
),Tao WANG
摘要:
针对作业车间调度问题,提出一种基于自适应权重和混沌的改进粒子群优化算法。构建以机器加工时间最短为优化目标的多约束作业车间调度模型,采用基于工序排列的编码方式得到粒子参数与工序序列的映射关系;基于自适应权重改进粒子群算法中的惯性系数和加速因子,使得算法可以根据适应度值动态调整参数因子;采用反向学习策略改善种群初始解的质量;引入莱维飞行、变邻域搜索、混沌,增强了算法的搜索能力,避免陷入局部最优解。试验结果表明:改进粒子群算法可以有效地提高粒子利用率,平衡全局搜索与局部搜索能力,改善传统粒子群算法易早熟的缺点,得到更优的解。
中图分类号:
| 1 |
RUDOLPH G . Convergence analysis of canonical genetic algorithms[J]. IEEE Transactions on Neural Networks, 1994, 5 (1): 96- 101.
doi: 10.1109/72.265964 |
| 2 |
BHOSALE K C , PAWAR P J . Material flow optimization of flexible manufacturing system using real coded genetic algorithm(RCGA)[J]. Materials Today Proceedings, 2018, 5 (2): 7160- 7167.
doi: 10.1016/j.matpr.2017.11.381 |
| 3 |
CRUZCHÁVEZ M A , MARTÍNEZRANGEL M G , CRUZROSALES M H . Accelerated simulated annealing algorithm applied to the flexible job shop scheduling problem[J]. International Transactions in Operational Research, 2017, 24 (5): 1119- 1137.
doi: 10.1111/itor.2017.24.issue-5 |
| 4 |
BERTSIMAS D , TSITSIKLIS J . Simulated annealing[J]. Statistical Science, 1993, 8 (1): 10- 15.
doi: 10.1214/ss/1177011077 |
| 5 |
陈知美, 顾幸生. 基于蚁群算法的不确定条件下的Job Shop调度[J]. 山东大学学报(工学版), 2005, 35 (4): 74- 79.
doi: 10.3969/j.issn.1672-3961.2005.04.018 |
|
CHEN Zhimei , GU Xingsheng . Job shop scheduling with uncertain processing time based on ant colony system[J]. Journal of Shandong University (Engineering Science), 2005, 35 (4): 74- 79.
doi: 10.3969/j.issn.1672-3961.2005.04.018 |
|
| 6 | DORIGO M , BIRATTARI M , STUTZLE T . Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2007, 1 (4): 28- 39. |
| 7 |
NIU Qun , JIAO Bin , GU Xingsheng . Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time[J]. Applied Mathematics and Computation, 2008, 205 (1): 148- 158.
doi: 10.1016/j.amc.2008.05.086 |
| 8 | DU Hui , LIU Dacheng , ZHANG Mianhao , et al. A hybrid algorithm based on particle swarm optimization and artificial immune for an assembly job shop scheduling problem[J]. Mathematical Problems in Engineering, 2016, 2016 (2): 1- 10. |
| 9 | AMIN J , MOHAMMAD A S , REZA T M . A hybrid algorithm based on particle swarm optimization and simulated annealing for a periodic job shop scheduling problem[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54 (1/4): 309- 322. |
| 10 |
DONG Wenyong , KANG Lanlan , ZHANG Wensheng . Opposition-based particle swarm optimization with adaptive mutation strategy[J]. Soft Computing, 2017, 21 (17): 5081- 5090.
doi: 10.1007/s00500-016-2102-5 |
| 11 |
MAY B R . Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261 (5560): 459- 467.
doi: 10.1038/261459a0 |
| 12 |
WANG H , WU Z , RAHNAMAYAN S , et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181 (20): 4699- 4714.
doi: 10.1016/j.ins.2011.03.016 |
| 13 | 李荣雨, 王颖. 基于莱维飞行的改进粒子群算法[J]. 系统仿真学报, 2017, 29 (8): 1685- 1691, 1701. |
| LI Rongyu , WANG Ying . Improved particle swarm optimization based on Lévy flights[J]. Journal of System Simulation, 2017, 29 (8): 1685- 1691, 1701. | |
| 14 |
姜天华. 猫群优化算法求解柔性作业车间调度问题[J]. 计算机工程与应用, 2018, 54 (23): 259- 263, 270.
doi: 10.3778/j.issn.1002-8331.1708-0297 |
|
JIANG Tianhua . Cat swarm optimization for solving flexible job shop scheduling problem[J]. Computer Engineering and Applications, 2018, 54 (23): 259- 263, 270.
doi: 10.3778/j.issn.1002-8331.1708-0297 |
|
| 15 | RATNAWEERA A , HALGAMUGE S K , WATSON H C . Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240- 255. |
| 16 |
BEAN J . Genetic algorithms and random keys for sequencing and optimization[J]. Orsa Journal on Computing, 1994, 6 (2): 154- 160.
doi: 10.1287/ijoc.6.2.154 |
| 17 | 张飞, 耿红琴. 基于混沌粒子群算法的车间作业调度优化[J]. 山东大学学报(工学版), 2013, 43 (3): 19- 22, 37. |
| ZHANG Fei , GENG Hongqin . Optimization of job shop scheduling problem based on chaos particle swarm optimization algorithm[J]. Journal of Shandong University(Engineering Science), 2013, 43 (3): 19- 22, 37. | |
| 18 | ELGOHARY A , ALRUZAIZA A S . Chaos and adaptive control in two prey, one predator system with nonlinear feedback[J]. Chaos Solitons & Fractals, 2007, 34 (2): 443- 453. |
| 19 | OUYANG X , ZHOU Y , LUO Q , et al. A novel discrete cuckoo search algorithm for spherical traveling salesman problem[J]. Applied Mathematics & Information Sciences, 2013, 7 (2): 777- 784. |
| 20 |
YANG X S , KARAMANOGLU M , HE X . Flower pollination algorithm: a novel approach for multiobjective optimization[J]. Engineering Optimization, 2014, 46 (9): 1222- 1237.
doi: 10.1080/0305215X.2013.832237 |
| 21 |
HANSEN P , MLADENOVIC N . Variable neighborhood search: principles and applications[J]. European Journal of Operational Research, 2001, 130 (3): 449- 467.
doi: 10.1016/S0377-2217(00)00100-4 |
| 22 |
潘全科, 王文宏, 朱剑英, 等. 基于粒子群优化和变邻域搜索的混合调度算法[J]. 计算机集成制造系统, 2007, 13 (2): 323- 328.
doi: 10.3969/j.issn.1006-5911.2007.02.019 |
|
PAN Quanke , WANG Wenhong , ZHU Jianying , et al. Hybrid heuristics based on particle swarm optimization and variable neighborhood search for job shop scheduling[J]. Computer Integrated Manufacturing Systems, 2007, 13 (2): 323- 328.
doi: 10.3969/j.issn.1006-5911.2007.02.019 |
|
| 23 |
钱晓雯. 求解作业车间调度问题的变邻域动态烟花算法[J]. 实验室研究与探索, 2018, 37 (1): 19- 21, 124.
doi: 10.3969/j.issn.1006-7167.2018.01.006 |
|
QIAN Xiaowen . Dynamic fireworks algorithm based on variable neighborhood search for job shop scheduling problem[J]. Research and Exploration in Laboratory, 2018, 37 (1): 19- 21, 124.
doi: 10.3969/j.issn.1006-7167.2018.01.006 |
|
| 24 |
姚远远, 叶春明. 求解作业车间调度问题的改进混合灰狼优化算法[J]. 计算机应用研究, 2018, 35 (5): 1310- 1314.
doi: 10.3969/j.issn.1001-3695.2018.05.007 |
|
YAO Yuanyuan , YE Chunming . Solving job shop scheduling problem using improved hybrid grey wolf optimizer[J]. Application Research of Computers, 2018, 35 (5): 1310- 1314.
doi: 10.3969/j.issn.1001-3695.2018.05.007 |
|
| 25 | BEASLEY J E. OR-Library[DB/OL]. (2004-09-07)[2018-10-24]. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt. |
| [1] | 韦修喜,陶道,黄华娟. 改进果蝇算法优化BP神经网络预测汽油辛烷值[J]. 山东大学学报 (工学版), 2023, 53(5): 20-28. |
| [2] | 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148. |
| [3] | 孙东磊, 鉴庆之, 李智琦, 韩学山, 王明强, 陈博, 付一木. 源网协调的电力系统均匀性规划[J]. 山东大学学报 (工学版), 2022, 52(5): 92-101. |
| [4] | 贾红艳,陈忠告,石文欣,韩晓光. 一个具有多稳定流的广义Hamiltonian保守混沌系统[J]. 山东大学学报 (工学版), 2022, 52(2): 74-79. |
| [5] | 黄澄,袁东风,张海霞. 基于狮群算法的数字孪生车间调度问题优化[J]. 山东大学学报 (工学版), 2021, 51(4): 17-23. |
| [6] | 程春蕊,毛北行. 一类非线性混沌系统的自适应滑模同步[J]. 山东大学学报 (工学版), 2020, 50(5): 1-6. |
| [7] | 孟晓玲,毛北行. 含对数项分数阶T混沌系统的滑模同步[J]. 山东大学学报 (工学版), 2020, 50(5): 7-12. |
| [8] | 程春蕊. 分数阶Brussel系统混沌同步的三种控制方案[J]. 山东大学学报 (工学版), 2020, 50(4): 46-51. |
| [9] | 王春彦,邸金红,毛北行. 基于新型趋近律的参数未知分数阶Rucklidge系统的滑模同步[J]. 山东大学学报 (工学版), 2020, 50(4): 40-45. |
| [10] | 李彩虹,方春,王志强,夏斌,王凤英. 基于超混沌同步控制的移动机器人全覆盖路径规划[J]. 山东大学学报 (工学版), 2019, 49(6): 63-72. |
| [11] | 方波,陈红梅. 一种新的双策略进化果蝇优化算法[J]. 山东大学学报 (工学版), 2019, 49(3): 22-31. |
| [12] | 薛薇,谭东程,张妹,刘世龙. 基于FPGA的四翼超混沌系统同步及其保密视频通信[J]. 山东大学学报 (工学版), 2019, 49(3): 1-7. |
| [13] | 刘萌,徐陶阳,李常刚,吴越,王智,史方芳,苏建军,张国辉,李宽. 基于粒子群算法的受端电网紧急切负荷优化[J]. 山东大学学报 (工学版), 2019, 49(1): 120-128. |
| [14] | 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报 (工学版), 2018, 48(5): 85-90. |
| [15] | 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54. |
|