山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 75-82.doi: 10.6040/j.issn.1672-3961.0.2018.540
Hongming LIU(),Hongyan ZENG,Wei ZHOU*(),Tao WANG
摘要:
针对作业车间调度问题,提出一种基于自适应权重和混沌的改进粒子群优化算法。构建以机器加工时间最短为优化目标的多约束作业车间调度模型,采用基于工序排列的编码方式得到粒子参数与工序序列的映射关系;基于自适应权重改进粒子群算法中的惯性系数和加速因子,使得算法可以根据适应度值动态调整参数因子;采用反向学习策略改善种群初始解的质量;引入莱维飞行、变邻域搜索、混沌,增强了算法的搜索能力,避免陷入局部最优解。试验结果表明:改进粒子群算法可以有效地提高粒子利用率,平衡全局搜索与局部搜索能力,改善传统粒子群算法易早熟的缺点,得到更优的解。
中图分类号:
1 |
RUDOLPH G . Convergence analysis of canonical genetic algorithms[J]. IEEE Transactions on Neural Networks, 1994, 5 (1): 96- 101.
doi: 10.1109/72.265964 |
2 |
BHOSALE K C , PAWAR P J . Material flow optimization of flexible manufacturing system using real coded genetic algorithm(RCGA)[J]. Materials Today Proceedings, 2018, 5 (2): 7160- 7167.
doi: 10.1016/j.matpr.2017.11.381 |
3 |
CRUZCHÁVEZ M A , MARTÍNEZRANGEL M G , CRUZROSALES M H . Accelerated simulated annealing algorithm applied to the flexible job shop scheduling problem[J]. International Transactions in Operational Research, 2017, 24 (5): 1119- 1137.
doi: 10.1111/itor.2017.24.issue-5 |
4 |
BERTSIMAS D , TSITSIKLIS J . Simulated annealing[J]. Statistical Science, 1993, 8 (1): 10- 15.
doi: 10.1214/ss/1177011077 |
5 |
陈知美, 顾幸生. 基于蚁群算法的不确定条件下的Job Shop调度[J]. 山东大学学报(工学版), 2005, 35 (4): 74- 79.
doi: 10.3969/j.issn.1672-3961.2005.04.018 |
CHEN Zhimei , GU Xingsheng . Job shop scheduling with uncertain processing time based on ant colony system[J]. Journal of Shandong University (Engineering Science), 2005, 35 (4): 74- 79.
doi: 10.3969/j.issn.1672-3961.2005.04.018 |
|
6 | DORIGO M , BIRATTARI M , STUTZLE T . Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2007, 1 (4): 28- 39. |
7 |
NIU Qun , JIAO Bin , GU Xingsheng . Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time[J]. Applied Mathematics and Computation, 2008, 205 (1): 148- 158.
doi: 10.1016/j.amc.2008.05.086 |
8 | DU Hui , LIU Dacheng , ZHANG Mianhao , et al. A hybrid algorithm based on particle swarm optimization and artificial immune for an assembly job shop scheduling problem[J]. Mathematical Problems in Engineering, 2016, 2016 (2): 1- 10. |
9 | AMIN J , MOHAMMAD A S , REZA T M . A hybrid algorithm based on particle swarm optimization and simulated annealing for a periodic job shop scheduling problem[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54 (1/4): 309- 322. |
10 |
DONG Wenyong , KANG Lanlan , ZHANG Wensheng . Opposition-based particle swarm optimization with adaptive mutation strategy[J]. Soft Computing, 2017, 21 (17): 5081- 5090.
doi: 10.1007/s00500-016-2102-5 |
11 |
MAY B R . Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261 (5560): 459- 467.
doi: 10.1038/261459a0 |
12 |
WANG H , WU Z , RAHNAMAYAN S , et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181 (20): 4699- 4714.
doi: 10.1016/j.ins.2011.03.016 |
13 | 李荣雨, 王颖. 基于莱维飞行的改进粒子群算法[J]. 系统仿真学报, 2017, 29 (8): 1685- 1691, 1701. |
LI Rongyu , WANG Ying . Improved particle swarm optimization based on Lévy flights[J]. Journal of System Simulation, 2017, 29 (8): 1685- 1691, 1701. | |
14 |
姜天华. 猫群优化算法求解柔性作业车间调度问题[J]. 计算机工程与应用, 2018, 54 (23): 259- 263, 270.
doi: 10.3778/j.issn.1002-8331.1708-0297 |
JIANG Tianhua . Cat swarm optimization for solving flexible job shop scheduling problem[J]. Computer Engineering and Applications, 2018, 54 (23): 259- 263, 270.
doi: 10.3778/j.issn.1002-8331.1708-0297 |
|
15 | RATNAWEERA A , HALGAMUGE S K , WATSON H C . Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240- 255. |
16 |
BEAN J . Genetic algorithms and random keys for sequencing and optimization[J]. Orsa Journal on Computing, 1994, 6 (2): 154- 160.
doi: 10.1287/ijoc.6.2.154 |
17 | 张飞, 耿红琴. 基于混沌粒子群算法的车间作业调度优化[J]. 山东大学学报(工学版), 2013, 43 (3): 19- 22, 37. |
ZHANG Fei , GENG Hongqin . Optimization of job shop scheduling problem based on chaos particle swarm optimization algorithm[J]. Journal of Shandong University(Engineering Science), 2013, 43 (3): 19- 22, 37. | |
18 | ELGOHARY A , ALRUZAIZA A S . Chaos and adaptive control in two prey, one predator system with nonlinear feedback[J]. Chaos Solitons & Fractals, 2007, 34 (2): 443- 453. |
19 | OUYANG X , ZHOU Y , LUO Q , et al. A novel discrete cuckoo search algorithm for spherical traveling salesman problem[J]. Applied Mathematics & Information Sciences, 2013, 7 (2): 777- 784. |
20 |
YANG X S , KARAMANOGLU M , HE X . Flower pollination algorithm: a novel approach for multiobjective optimization[J]. Engineering Optimization, 2014, 46 (9): 1222- 1237.
doi: 10.1080/0305215X.2013.832237 |
21 |
HANSEN P , MLADENOVIC N . Variable neighborhood search: principles and applications[J]. European Journal of Operational Research, 2001, 130 (3): 449- 467.
doi: 10.1016/S0377-2217(00)00100-4 |
22 |
潘全科, 王文宏, 朱剑英, 等. 基于粒子群优化和变邻域搜索的混合调度算法[J]. 计算机集成制造系统, 2007, 13 (2): 323- 328.
doi: 10.3969/j.issn.1006-5911.2007.02.019 |
PAN Quanke , WANG Wenhong , ZHU Jianying , et al. Hybrid heuristics based on particle swarm optimization and variable neighborhood search for job shop scheduling[J]. Computer Integrated Manufacturing Systems, 2007, 13 (2): 323- 328.
doi: 10.3969/j.issn.1006-5911.2007.02.019 |
|
23 |
钱晓雯. 求解作业车间调度问题的变邻域动态烟花算法[J]. 实验室研究与探索, 2018, 37 (1): 19- 21, 124.
doi: 10.3969/j.issn.1006-7167.2018.01.006 |
QIAN Xiaowen . Dynamic fireworks algorithm based on variable neighborhood search for job shop scheduling problem[J]. Research and Exploration in Laboratory, 2018, 37 (1): 19- 21, 124.
doi: 10.3969/j.issn.1006-7167.2018.01.006 |
|
24 |
姚远远, 叶春明. 求解作业车间调度问题的改进混合灰狼优化算法[J]. 计算机应用研究, 2018, 35 (5): 1310- 1314.
doi: 10.3969/j.issn.1001-3695.2018.05.007 |
YAO Yuanyuan , YE Chunming . Solving job shop scheduling problem using improved hybrid grey wolf optimizer[J]. Application Research of Computers, 2018, 35 (5): 1310- 1314.
doi: 10.3969/j.issn.1001-3695.2018.05.007 |
|
25 | BEASLEY J E. OR-Library[DB/OL]. (2004-09-07)[2018-10-24]. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt. |
[1] | 刘萌,徐陶阳,李常刚,吴越,王智,史方芳,苏建军,张国辉,李宽. 基于粒子群算法的受端电网紧急切负荷优化[J]. 山东大学学报 (工学版), 2019, 49(1): 120-128. |
[2] | 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报 (工学版), 2018, 48(5): 85-90. |
[3] | 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54. |
[4] | 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60. |
[5] | 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116. |
[6] | 毛北行,程春蕊. 分数阶Victor-Carmen混沌系统的自适应滑模控制[J]. 山东大学学报(工学版), 2017, 47(4): 31-36. |
[7] | 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88. |
[8] | 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79-83. |
[9] | 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59. |
[10] | 刘志军. 基于复合混沌与仿射变换的彩色图像加密算法[J]. 山东大学学报(工学版), 2016, 46(4): 1-8. |
[11] | 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51. |
[12] | 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9. |
[13] | 张君捧, 张庆范, 杨红娟. 基于块特征和混沌序列的图像篡改检测与恢复[J]. 山东大学学报(工学版), 2014, 44(6): 63-69. |
[14] | 花景新, 薄煜明, 陈志敏. 基于改进粒子群优化神经网络的房地产市场预测[J]. 山东大学学报(工学版), 2014, 44(4): 22-30. |
[15] | 张飞,耿红琴. 基于混沌粒子群算法的车间作业调度优化[J]. 山东大学学报(工学版), 2013, 43(3): 19-22. |
|