山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 1-9.doi: 10.6040/j.issn.1672-3961.1.2014.095
• 机器学习与数据挖掘 • 下一篇
董红斌, 张广江, 逄锦伟, 韩启龙
DONG Hongbin, ZHANG Guangjiang, PANG Jinwei, HAN Qilong
摘要: 针对单一聚类算法存在的不能泛化的问题,将集成学习技术应用于聚类算法中,集成学习技术可以显著提高学习系统的泛化能力。提出了1种基于粒子群和遗传算法的协同进化聚类集成算法,粒子群算法保证算法快速收敛,遗传算法全局搜索扩大搜索范围,提高了聚类的性能和收敛速度。将本研究提出的算法在多个UCI数据集上进行试验验证,结果表明该算法是有效的。
中图分类号:
[1] 孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报, 2008, 19(1):48-60. SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research[J]. Journal of Software, 2008, 19(1):48-60. [2] AK J. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8):651-666. [3] MIRKIN B. Clustering: a data recovery approach[M]. Florida, USA:CRC Press, 2012. [4] AZIMI J, FERN X. Adaptive cluster ensemble selection[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena, California, USA: IJCAI, 2009:992-997. [5] VEGA-PONS S, RUIZ-SHULCLOPER J. A survey of clustering ensemble algorithms[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2011, 25(03):337-372. [6] JIA J, XIAO X, LIU B, et al. Bagging-based spectral clustering ensemble selection[J]. Pattern Recognition Letters, 2011, 32(10):1456-1467. [7] YU Z, YOU J, WONG H S, et al. From cluster ensemble to structure ensemble[J]. Information Sciences, 2012, 198:81-99. [8] YU Z, LI L, WONG H S, et al. Probabilistic cluster structure ensemble[J]. Information Sciences, 2014, 267:16-34. [9] YU Z, CHEN H, YOU J, et al. Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data[J]. IEEE-ACM Transactions on Computational Biology and Bioinformatics, 2013, 10(3):657-670. [10] XIAO J, HE C, JIANG X, et al. A dynamic classifier ensemble selection approach for noise data[J]. Information Sciences, 2010, 180(18):3402-3421. [11] CHRISTOU I T. Coordination of cluster ensembles via exact methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2):279-293. [12] YANG Y, CHEN K. Temporal data clustering via weighted clustering ensemble with different representations[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(2):307-320. [13] WANG T. CA-Tree:a hierarchical structure for efficient and scalable coassociation-based cluster ensembles[J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2011, 41(3):686-698. [14] YANG F, LI X, LI Q, et al. Exploring the diversity in cluster ensemble generation: random sampling and random projection[J]. Expert Systems with Applications, 2014(41):4844-4866. [15] 罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007, 30(8):1315-1324. LUO Huilan, KONG Fansheng, LI Yixiao. An analysis of diversity measures in clustering enserbles[J]. Chinese Journal of Computers, 2007, 30(8):1315-1324. [16] 何灵敏,潘益民.一种基于GA的聚类集成算法[J].中国计量学院学报, 2011, 22(3):282-285. HE Linmin, PAN Yimin. A clustering ensemble algorithm based on GA[J]. Journal of China University of Metrology, 2011, 22(3):282-285. [17] 王丙景,高茂庭.一种基于遗传算法的聚类集成方法[J]. 计算机工程与应用, 2013, 49(8):1-8. WANG Bingjing, GAO Maoting. New model for clustering ensemble based on genetic algorithms[J]. Computer Engineering and Applications, 2013, 49(8):1-8. [18] HE J, TAN A H, TAN C L. Modified ART 2A growing network capable of generating a fixed number of nodes[J]. Neural Networks, IEEE Transactions on, 2004, 15(3):728-737. [19] PATERLINI S, KRINK T. Differential evolution and particle swarm optimisation in partitional clustering[J]. Computational Statistics & Data Analysis, 2006, 50(5):1220-1247. [20] 董红斌, 杨宝迪, 刘佳媛, 等. 协同演化算法在聚类中的应用[J]. 模式识别与人工智能, 2012, 25(4):676-683. DONG Hongbin, YANG Baodi, LIU Jiayuan, et al. A co-evolutionary algorithm for clustering[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(4):676-683. [21] 董红斌, 黄厚宽, 印桂生, 等. 协同演化算法研究进展[J]. 计算机研究与发展, 2008, 45(3):454-463. DONG Hongbin, HUANG Houkuan, YIN Guisheng, et al. An overview of the research on coevolutionary algorithms[J]. Journal of Computer Research and Development, 2008, 45(3):454-463. [22] TAN K C, YANG Y J, GOH C K. A distributed cooperative coevolutionary algorithm for multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5):527-549. [23] 唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报, 2005, 16(4):496-502. TANG Wei, ZHOU Zhihua. Bagging-based selective clusterer ensemble[J]. Journal of Software, 2005, 16(4):496-502. [24] 王继成, 萧嵘, 孙正兴, 等. Web 信息检索研究进展[J]. 计算机研究与发展, 2001, 38(2):187-193. WANG Jicheng, XIAO Rong, SUN Zhengxing, et al. State of the art of information retrieval on the Web[J]. Journal of Computer Research and Development, 2001, 38(2):187-193. [25] STREHL A, GHOSH J. Cluster ensembles—a knowledge reuse framework for combining multiple partitions[J]. The Journal of Machine Learning Research, 2003, 3(1):583-617. [26] 谷鹏花. 聚类集成及差异性的研究[D]. 成都:西南交通大学, 2012. GU Penghua. Research on clustering ensembles and diversity[D]. Chengdu: Southwest Jiaotong University, 2012. |
[1] | 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134-139. |
[2] | 张佩瑞,杨燕,邢焕来,喻琇瑛. 基于核K-means的增量多视图聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 48-53. |
[3] | 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87. |
[4] | 读习习,刘华锋,景丽萍. 一种融合社交网络的叠加联合聚类推荐模型[J]. 山东大学学报(工学版), 2018, 48(3): 96-102. |
[5] | 杨天鹏,徐鲲鹏,陈黎飞. 非均匀数据的变异系数聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 140-145. |
[6] | 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94. |
[7] | 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149. |
[8] | 周旺,张晨麟,吴建鑫. 一种基于Hartigan-Wong和Lloyd的定性平衡聚类算法[J]. 山东大学学报(工学版), 2016, 46(5): 37-44. |
[9] | 吉兴全,韩国正,李可军,傅荣荣,朱仰贺. 基于密度的改进K均值聚类算法在配网区块划分中的应用[J]. 山东大学学报(工学版), 2016, 46(4): 41-46. |
[10] | 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59. |
[11] | 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50. |
[12] | 江峰,杜军威,刘国柱,眭跃飞. 基于加权的K-modes聚类初始中心选择算法[J]. 山东大学学报(工学版), 2016, 46(2): 29-34. |
[13] | 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33. |
[14] | 徐平安,唐雁,石教开,张辉荣. 基于薛定谔方程的K-Means聚类算法[J]. 山东大学学报(工学版), 2016, 46(1): 34-41. |
[15] | 刘德宝, 吴耀华, 郭耀阳, 王艳艳. 基于串并行混合拣选策略的自动拣选系统品项分配优化[J]. 山东大学学报(工学版), 2015, 45(6): 36-44. |
|