您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 10-19.doi: 10.6040/j.issn.1672-3961.0.2018.063

• 机器学习与数据挖掘 • 上一篇    下一篇

基于六维前馈神经网络模型的图像增强算法

张宪红1,张春蕊2*   

  1. 1. 黑龙江工程学院计算机科学与技术学院, 黑龙江 哈尔滨 150001;2. 东北林业大学数学系, 黑龙江 哈尔滨 150001
  • 收稿日期:2018-02-09 出版日期:2018-08-20 发布日期:2018-02-09
  • 通讯作者: 张春蕊(1962— ),女,黑龙江哈尔滨人,教授,博士,主要研究方向为泛函微分方程理论及应用. E-mail:math@nefu.edu.cn E-mail:110464001@qq.com
  • 作者简介:张宪红(1983— ),女,黑龙江哈尔滨人,讲师,博士,主要研究方向为计算机图像处理. E-mail:110464001@qq.com
  • 基金资助:
    黑龙江省哲学社会科学研究规划资助项目(16EDD05);黑龙江工程学院博士科研启动基金资助项目(2017BJ15)

Image enhancement algorithm based on six dimensional feedforward neural network model

ZHANG Xianhong1, ZHANG Chunrui2*   

  1. 1. College of Computer Science and Technology, Heilongjiang Institue of Technogly, Harbin 150001, Heilongjiang, China;
    2. Department of Mathematics, Northeast Forestry University, Harbin 150001, Heilongjiang, China
  • Received:2018-02-09 Online:2018-08-20 Published:2018-02-09

摘要: 针对滤波去噪对边缘造成的弱化、部分采集图像不清晰以及对比度低的问题,在充分分析模型的动力学性质的基础上,提出一种基于六维前馈神经网络模型的图像增强算法。试验表明:基于六维前馈神经网络模型的图像增强算法可以更好地达到图像增强效果。与其它几种增强算法相比,增强效果清晰,且算法更优。

关键词: 神经网络, 动力系统, 图像处理, 图像增强, 六维前馈神经网络模型

Abstract: Aiming at the problems of weakening the edges caused by filtering denoising, partially indistinct images and low contrast, an image enhancement algorithm based on the six dimension feedforward neural network model was proposed on the basis of fully analyzing the dynamic properties of the model. The experiment showed that the image enhancement algorithm based on the six dimensional feedforward neural network model could better achieve a very good enhancement effect. Compared with other enhancement algorithms, the enhancement effect was clearer and the algorithm was better.

Key words: image enhancement, neural network, six dimensional feed-forward neural network model, dynamic system, image processing

中图分类号: 

  • TP391.4
[1] COHENM A, GROSSBERG S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Transactions on Systems Man & Cybernetics, 1983, 13(5):815-826.
[2] HOPFIELDJ J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10):3088-92.
[3] SONG Y, WEI J. Local hopf bifurcation and global periodic solutions in a delayed predator-prey system[J]. Journal of Mathematical Analysis & Applications, 2005, 301(1):1-21.
[4] LI L, YUAN Y. Dynamics in three cells with multiple time delays[J]. Nonlinear Analysis Real World Applications, 2008, 9(3):725-746.
[5] WANG H, JIANG W. Hopf-pitchfork bifurcation in van der pol's oscillator with nonlinear delayed feedback[J]. Journal of Mathematical Analysis & Applications, 2010, 368(1):9-18.
[6] JIANGW, NIU B. On the coexistence of periodic or quasi-periodic oscillations near a hopf-pitchfork bifurcation in NFDE[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(3):464-477.
[7] RUANS G, FILFIL R S. Dynamics of a two-neuron system with discrete and distributed delays[J]. Physica D Nonlinear Phenomena, 2004, 191(3-4):323-342.
[8] WANG H, WANG J. Hopf-pitchfork bifurcation in a two-neuron system with discrete and distributed delays[J]. Mathematical Methods in the Applied Sciences, 2015, 38(18): 4967-4981.
[9] PAN Y, YU H. Biomimetic hybrid feedback feedforward neural-network learning control[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017(99):1-7.
[10] HU J Y, ZHANG J S, ZHANG C X, et al. A new deep neural network based on a stack of single-hidden-layer feedforward neural networks with randomly fixed hidden neurons[J]. Neurocomputing, 2016, 171(C):63-72.
[11] PAYAL A, RAI C S, REDDY B V R. Analysis of some feedforward artificial neural network training algorithms for developing localization framework in wireless sensor networks[J]. Wireless Personal Communications, 2014, 82(4):1-18.
[12] MASULLI P, VILLAA E P. Dynamics of evolving feed-forward neural networks and their topological invariants[M]. Barcelona, Spain: Springer International Publishing, 2016: 25-46.
[13] WANG P, LU J H, ZHANG Y H. Global relative input-output sensitivities of the feed-forward loops in genetic networks[J]. Neurocomputing, 2012, 78(1):155-165.
[14] MCCULLENN J, MULLIN T, GOLUBITSKY M. Sensitive signal detection using a feed-forward oscillator network[J]. Physical Review Letters, 2007, 98(25): 254101.
[15] 褚江,陈强,杨曦晨.全参考图像质量评价综述[J].计算机应用研究,2014, 31(1):13-22. CHU Jiang, CHEN Qiang, YANG Xichen. A review of all reference image quality evaluation[J]. Computer Application Research, 2014, 31(1):13-22.
[16] 王哲远,李元祥,郁文贤.SAR图像质量评价综述[J].遥感信息, 2016, 31(5):1-10. WANG Zheyuan, LI Yuanxiang, YU Wenxian. SAR image quality assessment overview[J]. Remote Sensing Information, 2016, 31(5):1-10.
[17] 王志明. 无参考图像质量评价综述[J].自动化学报, 2015, 41(6):1062-1079. WANG Zhiming. Overview of no reference image quality assessment[J]. Automation Journal, 2015, 41(6): 1062-1079.
[18] 李俊峰.基于RGB色彩空间自然场景统计的无参考图像质量评价[J].自动化学报,2015, 41(9):1601-1615. LI Junfeng. No reference image quality assessment based on RGB color space natural scene statistics[J]. Automation Journal, 2015, 41(9):1601-1615.
[1] 孙东磊,王艳,于一潇,韩学山,杨明,闫芳晴. 基于BP神经网络的短期光伏集群功率区间预测[J]. 山东大学学报 (工学版), 2020, 50(5): 70-76.
[2] 王志伟,葛楠,李春伟. 基于BP神经网络算法的结构振动模态模糊控制[J]. 山东大学学报 (工学版), 2020, 50(5): 13-19.
[3] 廖南星,周世斌,张国鹏,程德强. 基于类激活映射-注意力机制的图像描述方法[J]. 山东大学学报 (工学版), 2020, 50(4): 28-34.
[4] 彭岩,冯婷婷,王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报 (工学版), 2020, 50(4): 1-7.
[5] 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13.
[6] 李怡霏,郭尊华. 一种Chirplet神经网络自动目标识别算法[J]. 山东大学学报 (工学版), 2020, 50(3): 8-14.
[7] 金保明,卢光毅,王伟,杜伦阅. 基于弹性梯度下降算法的BP神经网络降雨径流预报模型[J]. 山东大学学报 (工学版), 2020, 50(3): 117-124.
[8] 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33.
[9] 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117.
[10] 陈宁宁,赵建伟,周正华. 基于校正神经网络的视频追踪算法[J]. 山东大学学报 (工学版), 2020, 50(2): 17-26.
[11] 陈艳平,冯丽,秦永彬,黄瑞章. 一种基于深度神经网络的句法要素识别方法[J]. 山东大学学报 (工学版), 2020, 50(2): 44-49.
[12] 曹小洁,李小华,刘辉. 一类非仿射非线性大系统的结构在线扩展[J]. 山东大学学报 (工学版), 2020, 50(1): 35-48.
[13] 蔡国永,林强,任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报 (工学版), 2020, 50(1): 1-7,20.
[14] 唐友名,董坤,张袁伟. ECVT型混合动力城市客车动力系统设计与验证[J]. 山东大学学报 (工学版), 2019, 49(6): 98-106.
[15] 杨巨成,韩书杰,毛磊,代翔子,陈亚瑞. 胶囊网络模型综述[J]. 山东大学学报 (工学版), 2019, 49(6): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[2] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[3] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[4] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[5] 李芳佳, 高尚策, 唐政, 石井雅博, 山下和也. 基于元胞自动化模型的三维雪花晶体近似模式的产生(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 102 -105 .
[6] 孔维涛,张庆范,张承慧 . 基于DSP的空间矢量脉宽调制(SVPWM)的实现[J]. 山东大学学报(工学版), 2008, 38(3): 81 -84 .
[7] 朱向彩,栾云才,徐健 . 基于VB及FTA的城市交通评价系统[J]. 山东大学学报(工学版), 2007, 37(4): 89 -92 .
[8] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[9] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[10] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22 -26 .