您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (3): 8-14.doi: 10.6040/j.issn.1672-3961.0.2019.062

• 机器学习与数据挖掘 • 上一篇    下一篇

一种Chirplet神经网络自动目标识别算法

李怡霏(),郭尊华*()   

  1. 山东大学(威海)机电与信息工程学院, 山东 威海 264209
  • 收稿日期:2019-02-14 出版日期:2020-06-20 发布日期:2020-06-16
  • 通讯作者: 郭尊华 E-mail:liyifei13@mail.sdu.edu.cn;gritty@sdu.edu.cn
  • 作者简介:李怡霏(1994—),女,广西桂林人,硕士研究生,主要研究方向为信号处理和目标识别. E-mail: liyifei13@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61401252)

A Chirplet neural network for automatic target recognition

Yifei LI(),Zunhua GUO*()   

  1. School of Mechanical, Electrical & Information Engineering, Shandong University(Weihai), Weihai 264209, Shandong, China
  • Received:2019-02-14 Online:2020-06-20 Published:2020-06-16
  • Contact: Zunhua GUO E-mail:liyifei13@mail.sdu.edu.cn;gritty@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(61401252)

摘要:

针对飞机目标的自动识别问题,提出一种联合特征提取与分类的Chirplet神经网络方法,实现一维高分辨率距离像的识别。Chirplet神经网络将Chirplet原子变换用于多层前馈神经网络结构的输入层,替换传统的激励函数对距离像序列进行特征提取;网络的分类部分由隐层和输出层组成。在训练过程中调整神经网络权值的同时,完成对Chirplet原子时频参数的自动调整,协调优化特征参数和分类器参数,使Chirplet神经网络同时实现特征提取和目标分类。对4类飞机目标的仿真测试结果表明,相比时频变换和Gabor原子网络等方法,具有四特征参数的Chirplet神经网络方法具有较高的识别率和抗噪性能。

关键词: 自动目标识别, 高分辨率距离像, Chirplet神经网络

Abstract:

Aiming at automatic target recognition of aircrafts, a Chirplet neural network for joint feature extraction and target classification was proposed to realize recognition of one-dimensional high resolution range profiles. Based on the multilayer feedforward neural network structure, the Chirplet-atom transform was used to replace the conventional excitation function in the input layer for feature extraction, and the hidden layer and output layer constituted the classifier of the network. The network weights and the parameters of Chirplet-atom node were simultaneously adjusted and optimized to achieve joint feature extraction and target classification. The simulation results of the four types of aircrafts showed that the Chirplet neural network method with the four-feature-parameters had higher recognition rate and anti-noise performance than the time-frequency transformation and Gabor atoms network.

Key words: automatic target recognition, high resolution range profile, Chirplet neural network

中图分类号: 

  • TP183

图1

Chirplet神经网络结构图"

图2

四类目标归一化原始距离像"

表1

0°~45°方位角的识别率"

识别方法 识别率/% 训练耗时/s
YF22 J6 F117 B2
距离像 78.3 86.7 78.7 84.7 6.70
FFT 89.5 94.0 88.1 95.8 9.89
Gabor变换 91.7 95.8 89.6 96.3 7.54
Chirplet变换 92.3 96.9 90.6 96.7 8.59
小波神经网络 94.3 96.8 92.0 96.4 0.96
Gabor原子网络 95.1 99.1 96.7 97.6 1.22
Chirplet神经网络 97.7 99.8 97.0 98.1 2.13

表2

0°~90°方位角的识别率"

识别方法 识别率/% 训练耗时/s
YF22 J6 F117 B2
距离像 76.3 82.4 73.8 82.3 8.90
FFT 80.9 89.8 80.5 95.7 12.41
Gabor变换 82.3 88.3 81.6 96.0 9.39
Chirplet变换 82.5 92.6 83.2 95.5 12.86
小波神经网络 83.2 90.7 80.8 94.5 10.57
Gabor原子网络 85.3 93.8 85.2 96.7 23.38
Chirplet神经网络 87.2 95.3 86.5 96.8 29.50

表3

0°~180°方位角的识别率"

识别方法 识别率/% 训练耗时/s
YF22 J6 F117 B2
距离像 72.8 80.9 71.0 80.2 13.00
FFT 74.8 83.0 74.2 96.6 21.22
Gabor变换 77.6 86.7 77.5 96.3 14.91
Chirplet变换 78.0 92.0 79.8 96.8 20.07
小波神经网络 79.3 89.8 81.9 94.8 32.34
Gabor原子网络 83.1 91.8 82.5 95.7 137.69
Chirplet神经网络 83.9 92.1 84.7 96.0 156.22

图3

Chirplet神经网络和Gabor原子网络在不同信噪比条件下的识别率"

表4

SNR=5 dB,方位角0°~180°数据的识别率"

识别方法 识别率/%
YF22 J6 F117 B2
距离像 44.9 48.6 49.5 46.0
FFT 55.1 53.4 51.3 69.8
Gabor变换 51.6 52.2 48.0 67.4
Chirplet变换 59.8 51.4 54.1 73.4
小波神经网络 65.7 76.5 71.4 74.7
Gabor原子网络 72.8 74.5 70.1 76.8
Chirplet神经网络 75.5 77.3 74.2 75.1
1 LI H J , YANG S H . Using range profiles as feature vectors to identify aerospace objects[J]. IEEE Transactions on Antennas and Propagation, 1993, 41 (3): 261- 268.
doi: 10.1109/8.233138
2 JACOBS S P , O'SULLIVAN J A . Automatic target recognition using sequences of high resolution radar range-profiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (2): 364- 381.
doi: 10.1109/7.845214
3 CHEN J , DU L , HE H , et al. Convolutional factor analysis model with application to radar automatic target recognition[J]. Pattern Recognition, 2019, 87, 140- 156.
doi: 10.1016/j.patcog.2018.10.014
4 郭尊华, 李达, 张伯彦. 雷达高距离分辨率一维像目标识别[J]. 系统工程与电子技术, 2013, 35 (1): 53- 60.
doi: 10.3969/j.issn.1001-506X.2013.01.09
GUO Zunhua , LI Da , ZHANG Boyan . Survey of radar target recognition using one-dimensional high range resolution profiles[J]. Systems Engineering & Electronics, 2013, 35 (1): 53- 60.
doi: 10.3969/j.issn.1001-506X.2013.01.09
5 张贤达. 现代信号处理[M]. 2版 北京: 清华大学出版社, 2002.
6 GUO Z H , LI S H . One-dimensional frequency-domain features for aircraft recognition from radar range profiles[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46 (4): 1880- 1892.
7 DUIN R , PE , KALSKA E . The science of pattern recognition. Achievements and perspectives[J]. Studies in Computational Intelligence, 2007, 63, 221- 259.
8 徐彬, 陈渤, 刘宏伟, 等. 基于注意循环神经网络模型的雷达高分辨率距离像目标识别[J]. 电子与信息学报, 2016, 38 (12): 2988- 2995.
XU Bin , CHEN Bo , LIU Hongwei , et al. Attention-based recurrent neural network model for radar high-resolution range profile target recognition[J]. Journal of Electronics & Information Technology, 2016, 38 (12): 2988- 2995.
9 PAN M , JIANG J , KONG Q , et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1609- 1613.
doi: 10.1109/LGRS.2017.2726098
10 LUNDEN J, KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]//Proceedings of 2016 IEEE Radar Conference (RadarConf). Philadelphia, USA: IEEE, 2016: 1-6.
11 殷和义, 郭尊华. 一维卷积神经网络用于雷达高分辨率距离像识别[J]. 电讯技术, 2018, 58 (10): 1121- 1126.
doi: 10.3969/j.issn.1001-893x.2018.10.002
YIN Heyi , GUO Zunhua . Radar HRRP target recognition with one-dimensional CNN[J]. Telecommunication Engineering, 2018, 58 (10): 1121- 1126.
doi: 10.3969/j.issn.1001-893x.2018.10.002
12 SHAW A K , PAUL A S , WILLIAMS R . Eigen-template-based HRR-ATR with multi-look and time-recursion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49 (4): 2369- 2385.
doi: 10.1109/TAES.2013.6621822
13 FENG B , CHEN B , LIU H W . Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61, 379- 393.
doi: 10.1016/j.patcog.2016.08.012
14 LIU H , FENG B , CHEN B , et al. Radar high-resolution range profiles target recognition based on stable dictionary learning[J]. IET Radar, Sonar & Navigation, 2016, 10 (2): 228- 237.
15 ZHAO Q , PRINCIPE J C . Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (2): 643- 654.
doi: 10.1109/7.937475
16 LIU W B , WANG Z D , LIU X H , et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234, 11- 26.
doi: 10.1016/j.neucom.2016.12.038
17 ALEXANDRIDIS A K , ZAPRANIS A D . Wavelet neural networks: a practical guide[J]. Neural Networks, 2013, 42, 1- 27.
doi: 10.1016/j.neunet.2013.01.008
18 SHI Y , ZHANG X D . A Gabor atom network for signal classification with application in radar target recognition[J]. IEEE Transactions on Signal Processing, 2001, 49 (12): 2994- 3004.
doi: 10.1109/78.969508
19 ZHU F , ZHANG X D , HU Y F . Gabor filter approach to joint feature extraction and target recognition[J]. IEEE Transactions on Aerospace and Electronic systems, 2009, 45 (1): 17- 30.
doi: 10.1109/TAES.2009.4805260
20 MANN S, HAYKIN S. The chirplet transform: a generalization of Gabor's logon transform[C]//Proceedings Vision Interface'91. Alberta, Canada: University of Calgary, 1991: 205-212.
21 MANN S , HAYKIN S . Adaptive "chirplet" transform: an adaptive generalization of the wavelet transform[J]. Optical Engineering, 1992, 31 (6): 1243- 1256.
doi: 10.1117/12.57676
22 MANN S , HAYKIN S . The chirplet transform: physical considerations[J]. IEEE Transactions on Signal Processing, 1995, 43 (11): 2745- 2761.
doi: 10.1109/78.482123
23 YANG Y , PENG Z K , DONG X J , et al. General parameterized time-frequency transform[J]. IEEE Transactions on Signal Processing, 2014, 62 (11): 2751- 2764.
doi: 10.1109/TSP.2014.2314061
24 BULTAN A . A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing, 1999, 47 (3): 731- 745.
doi: 10.1109/78.747779
25 朱明, 金炜东, 普运伟, 等. 基于Chirplet原子的雷达辐射源信号特征提取[J]. 红外与毫米波学报, 2007, 26 (4): 302- 306.
doi: 10.3321/j.issn:1001-9014.2007.04.014
ZHU Ming , JIN Weidong , PU Yunwei , et al. Feature extraction of radar emitter signals based on gaussian chirplet atoms[J]. Journal of Infrared & Millimeter Waves, 2007, 26 (4): 302- 306.
doi: 10.3321/j.issn:1001-9014.2007.04.014
[1] 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84.
[2] 刘帆,陈泽华,柴晶. 一种基于深度神经网络模型的多聚焦图像融合方法[J]. 山东大学学报(工学版), 2016, 46(3): 7-13.
[3] 李翔1,朱全银1,王尊2. 基于可变基函数和GentleAdaBoost的小波神经网络研究[J]. 山东大学学报(工学版), 2013, 43(5): 31-38.
[4] 尹建川1,2, 邹早建1,3, 徐锋1. 一种基于Akaike信息准则的极限学习机[J]. 山东大学学报(工学版), 2011, 41(6): 7-11.
[5] 梅红,王勇,赵荣齐 . 基于蚁群神经网络算法的机器人逆解[J]. 山东大学学报(工学版), 2008, 38(5): 72-76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[4] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[7] 孙国华,吴耀华,黎伟. 消费税控制策略对供应链系统绩效的影响[J]. 山东大学学报(工学版), 2009, 39(1): 63 -68 .
[8] 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92 -95 .
[9] 王,张艳宁,申家振,刘俊成 . 基于信息测度和支持向量机的图像边缘检测[J]. 山东大学学报(工学版), 2006, 36(3): 95 -99 .
[10] 张爱娟. 模拟体液中类骨羟基磷灰石的合成[J]. 山东大学学报(工学版), 2010, 40(3): 86 -90 .